

• HONGZHIWEI TECHNOLOGY(SHANGHAI) CO.,LTD

鸿之微科技(上海)股份有限公司

HONGZHIWEI TECHNOLOGY(SHANGHAI) CO., LTD

鸿之微科技(上海)股份有限公司

HONGZHIWEI TECHNOLOGY(SHANGHAI) CO., LTD

TOPS是搭载在鸿之微Device Studio下的一款子软件,使用TOPS请下载Device Studio。

下载地址: http://hzwtech.com/download-product.html?id=7

下载之后申请带有TOPS子软件的Device Studio license(非免费);

联系鸿之微售后团队安装TOPS。

2020A版本 开放下载日期:	2019B版本 开放下载日期: 2019-09-30	
DeviceStudio_x64.exe 1.33GB	DeviceStudio_x86.rar 311,962KB	4 4

1/ 安装之后,打开Device Studio,界面如下

鸿之微科技(上海)股份有限公司 HONGZHIWEI TECHNOLOGY(SHANGHAI) CO.,LTD

	Image: Device Studio File Edit View Build Simulator Window Help Image:	. ♦ () - 25 88 8 4 0 0 1 % - 10	▲ ೫ ☆ ☆ 중 • 萬 • द •	38 22 II 🗔 🍄 🐲 🗃 💊	×
step1选择项目保存路径	rroject D X	New Project ← → < ↑ → 此电脑 → 文档 → DeviceStudioProjects 组织 ▼ 新建文件夹 DPD_res gif TOPS宣传 OneDrive 図片	▼ 参改日期 美型 大J 2020/6/5 20:16 文件夹	× 登 澄雲"DeviceStudioProjects" ♪ 1 単語 ▼ ②	
step 2 给项目命名	Properties Value	 文档 ○ WPS网盘 ■ 此电脑 ③ 3D 对象 圖 视频 ■ 同片 			
step 3 单击保存	Job Manage De	★ 文档 文件名(N): TOPS.hpf 保存类型(T): Project Files (*.hpf) へ 隐藏文件夹	step 2	✓	(한 22 중) Actions
				step 3	
	Ready				

ZHIWEI TECHNOLOGY(SHANGHAI) CO.,LTD

3.1/ windows下使用TOPS计算——选择计算设备

一般Device Studio 默认使用本地,也就是windows计算,在图中的设置中(红框中的按钮) 可选择计算设备,默认选择MyComputer。

E Device Studio				— П X
File Edit View Build Simulator Wi	indow Help			_
	k 4 Q ♣ A • 22 E	H + & H & & & P W	/▲ \$\$> \$^> \$^> [8]	• » & » 🗁 »
Project P Image: System Image: System Properties Value	MachineOptions Machine)) Edit Delete Select		
	Job Manager		log in local successfully	\$ \$
	Description	Script	Status	Actions
	TOPS C:/Use	ers/YmXia/Documents/DeviceStudioProjects/TOPS/T	ops Finished	\$

鸿之微科技(上海)股份有限公司 HONGZHIWEI TECHNOLOGY(SHANGHAI) CO., LTD

3.1/ windows下使用TOPS计算——设置TOPS计算路径

143 KB

打开File->Options->Calca-command,出现如右图的界面,然后在Tops一栏中将Tops.exe文件的路径填入。此文件一般默认在Device Studio安装目录下software文件夹中。

	bin	2019/9/26 9:45	文件夹	
	doc	2017/6/9 9:26	文件夹	
	example	2018/1/30 17:01	文件夹	
	material	2018/5/11 14:20	文件夹	
	neutralatomdatabase	2017/6/9 9:26	文件夹	
	ONCV	2019/4/4 11:12	文件夹	
	pseudopotential	2018/1/10 9:21	文件夹	
	rescuatomdatabase	2018/1/10 9:18	文件夹	
	software	2020/6/16 9:21	文件夹	
	tpuhardness	2018/5/14 14:16	文件夹	
t	ds.ico	2015/12/23 13:00	ICO 文件	

Options	
Location Graphics Calcu-command	
Nanodcal:	
D:/Data/Tops_vis/DeviceStudio_x64/software/Nanodcal/Nan	nodcal. exe
RESCU:	
D:/Data/Tops_vis/DeviceStudio_x64/software/RESCU/RESCU.	exe
PWmat	
PWmat	
pfc	
pfc	
pf	
pf	
Tops	
D:/Data/Tops_vis/DeviceStudio_x64/software/Tops/Tops.ex	Ke la
Pbs commit	
qsub	
Pbs stat	
qstat	
Pbs delete	
qdel	
mpirun	
mpirun	
	OK Cancel

3.1/Linux下使用TOPS计算——选择计算设备

在选择计算设备时选择New,之后出现右图界面,按照自己设备的要求填好,最后如右图所示。

Pevice Studio					– 🗆 X
File Edit View Build Simulator Wi	ndow Help				
	R 4 Q 4 (A	┌▾▓ृृृॄॄॄ ╄ृ ⊘ ♂ ╠ ╩ ╠ № № ♬		5 8 % ab	°₀
Project		MachineOptions Machine MyComputer(127.0.0.1) 曲 HPC(10.1.10.230) 曲 HPC2(10.1.10.250)	X Bev Edit Balete		
	Tab Managar		log in logal suggest		\$ * \$
	Description	Conint	TOS IN LOCAL SUCCESSI	Chatur	Actions
	Description			Status	Actions

nputer Name HPC			
ostlp <u>10.1</u> ort <u>22</u>			
esource			
assword	•••		
] PBS			
ccount name ueue name			
axımum wall-clock	24H 🜲	om 🗘	0S 🗘

3.1/Linux下使用TOPS计算——设置TOPS计算路径

打开File->Options->Calca-command,出现如右图的界面,然后在Tops一栏中Linux下的可执行文件路径写入Tops一栏,。

示例路径: /home/username/Tops/tops

Options				
Location	Graphics	Calcu-command		
Nanodcal:				
		1000	re/Nanodcal/Nanodcal. exe	
RESCU:				
			U/RESCU. exe	
PWmat				
PWmat				
pfc				
pfc				
pf				
pf				
ľops				
	'OPS_tes	t/Tops_static		
rbs commit				
rbs commit qsub				
rbs commit qsub Pbs stat				
rbs commit qsub Pbs stat qstat				
rbs commit qsub Pbs stat qstat Pbs delete				
rbs commit qsub Pbs stat qstat Pbs delete qdel				
rbs commit qsub Pbs stat qstat Pbs delete qdel mpirun				
rbs commit qsub Pbs stat qstat Pbs delete qdel mpirun mpirun				
rbs commit qsub Pbs stat qstat Pbs delete qdel mpirun mpirun				
rbs commit qsub Pbs stat qstat Pbs delete qdel mpirun mpirun				Cancel

选中项目栏中的项目后,选择 Simulator->TOPS->TOPS

鸿之微科技(上海)股份有限公司 HONGZHIWEI TECHNOLOGY(SHANGHAI) CO.,LTD

T Device Studio	_									12		7	- 0	\times
<u>File Edit View Build Simulator V</u>	TOPS									?	×			
	Topolo	ey S	olver I	nitializer	Iteration	1						-	» 88 »	₩ 0-0 >>
?roject 🗗	Spec	у					SegmentAsymmts	У						
TOPS	Spec	y Numbe	r 1			-	Component Name	A						
	Volu	me Frac	tion 1.0				Segment Asymmet	etry 1						
	Bloc	k			m				au m					
	S	pecy	Block	Left id	Right id	Branc	h Style	Length	scretizatic					
	0	•	A	0	1	1	LEFT_BI -	0.3	0.01	-				
								0.300		+				
< 'roperties 6						Previe	¥							
Summativir Sustan														
Properties Value	Inte	raction									_			
			Comp	onent Nam	e		Interaction							
	A A					0							£033	C B
													Actions	
														1
									Generate	Car	ncel	-		,

Topology主要定义待计算的分子拓扑信息

4.1/参数设置——Topology->Specy/Topology->Segement Asymmetry

参数名	物理意义	数据类型	范围	例子	备注		
Specy Number	物种数	unsigned	>=0	1			
Volume Fraction	体积分数	double	>0	1.0	与物种数关 联的多参数, 空格分隔		
Component Name	组分名称	string	size()>0	А	与Block参 数关联,自 动补全		
Segment Asymmetry	链段不对称 性	double	>0	1 1.5	可多参数, 空格分隔		

, duy						Seg	mentAsymmtr	У		
pecy 1	Numbe	er 1			-	Com	ponent Name	A		
olume	Frac	tion 1.0				Seg	ment Asymme	try 1		
lock										
Spe	су	Block	Left id	Right id	Bra	nch	Style	Length	scretizatic	
0	•	A	0	1	1		LEFT_BI -	0.3	0.01	-
								0.300		+
					Prev	iew]			
nterad	ction				Prev	iew]			
nterad	ction	Com	ponent Nam	ne	Prev	iew]	Interact	ion	

鸿之微科技(上海)股份有限公司

ONGZHIWEI TECHNOLOGY(SHANGHAI) CO.,LTD

4.1/参数设置——Topology->block

hzwtech						Specy						SegmentAsymm	itry			
参数名	物理意义	数据类型	范围	例子	备注	Specy Volum	Specy Number 2 Volume Fraction 0.50			Component Name A B Segment Asymmetry 1 1						
Specy	物种ID	enum	可选	0	物种总数相 关联	Block	ecy	<u>Block</u>	Left id	Right id	Branch	Style	Length	scretizati		^
Block	组分名	string		А	自定义嵌段 名	0	•	A B	0	1 2	1	LEFT_B ▼	0.3 0.3	0.01	-	
left/right id	左/右端点	unsigned int	>=0	0	具体含义解 释请看下页	0	• •	A A B	2 0 1	3 1 2	1 1 1	LEFT_B ▼ LEFT_B ▼	0.3 0.3 0.3	0.01	-	
Branch	分支数目	unsigned int	>=1	1							Preview		1.500			~
Branch Side	分支端	enum	可选	LEFT_BRANCH/ RIGHT_ BRANCH		A B	Interaction Component Name A B					Interaction 40				
Length	嵌段体积 分数	double	>0	0.33	长度需要被 链段离散整 除 不则链											
Contour Discretizatio n	链段离散	double	>0	0.01	际, 百则链 段离散将会 自动调整											

4.1/参数设置——Topology->block(嵌段共聚物建模方法)

a/将待计算的分子的端点和连接点按顺序标号(从左往右),如下图;

b/ 然后按Block的顺序,填入Block类型,Block左标号和右标号;

c/界面Preview可以查看建模分子。

4.1/参数设置——Topology->block(嵌段共聚物建模例子1)

线型分子建模

线型多组分分子建模

鸿之微科技(上海)股份有限公司 HONGZHIWEI TECHNOLOGY(SHANGHAI) CO.,LTD

4.1/参数设置——Topology->block(嵌段共聚物建模例子2)

星型分子建模

多分子建模(多分子数目请预先在Specy Number设定,这里设定为两种分子)

设定各block之间的相互作用参数 x N, 默认值40

ecy							SegmentAsymm	try				-
есу	Numbe	r	2			-	Component Na	me	A B	С		
lume	e Frac	tion	0.50	0.50			Segment Asym	metry	1 1	1		
ock												
Spe	ecy	Ble	ock	Left id	Right id	Branch	Style	Len	gth	scretizati		^
.		A		0	1	1	LEFT_B -	0.3		0.01	-	
))	•	В		1	2	1	LEFT_B -	0.3		0.01	5	
Ú.	•	A		2	3	1	RIGHT -	0.3		0.01	2	
N.	-	с		3	4	1	LEFT_B -	0.3		0.01	-	
1 1	•	В		4	5	1	LEFT_B •	0.3		0.01	-	
								1 500			i.	~
iters	action					Previe	-W					
			Com	ponent Nar	ne			1	ntera	iction		
В						4	D					_
C						4	D					
С						4	D					

定义使用的PDE求解方式以及相关设定

参数名	物理意义	数据类型	范围	例子	备注			
SpaceGroup	对称群	enum	可选	Triclinci_P1	利用对称性 加速	Topology Solver Initializer Iterati SpaceGroup	on Triclinic_P1	•
FFTThread	开启线程数	int	>=1	4	调用FFTW 时开启的线 程数	FFTThread GridSize. Nx GridSize. Ny	2 64 64	* *
GridSize.Nx /Ny/Nz	空间网格点 数	int	>=1	64		GridSize.Nz Method	64 0S2	
Method	求解PDE时 线积分方式	enum	可选	OS2	一般默认			

4.2/参数设置——Solver->SpaceGroup 对称群及对应的相

这里需要注意:

确定计算的相再使用对称加速,否则很有可能计算错,若不确定请使用默认Triclinic_P1。

对称群名	对称群号	对应相
Triclinic_P1	1	无对称加速适用于所有相
Orthorhombic_Fddd	70	O ₇₀
Tetragonal_P42mnm	136	sigma
Hexagonal_P6mmm	191	Z
Hexagonal_P63mmc	194	HCP/PL/C14
Cubic_I4132	214	交替Gyroid
Cubic_Pm_3n	223	A15
Cubic_Pn_3m	224	Diamond
Cubic_Fm_3m	225	FCC
Cubic_Fd_3m	227	C15
Cubic_Fd_3c	228	交替Diamond
Cubic_Im_3m	229	BCC
Cubic_Ia_3d	230	Gyroid

鸿之微科技(上海)股份有限公司

IONGZHIWEI TECHNOLOGY(SHANGHAI) CO., LTD

						Тур
参数名	物理意义	数据类型	范围	例子	备注	Pat
UintCell.Lx /Ly/Lz	周期初猜 值	double	>0	4.45	Rg	
InitializerT ype	初始化器 的类型	enum	可选	File	File和 Model两 种模式	

Topology Solver Initializer Iteration UnitCell. Ly UnitCell. Lz 6 \$ UnitCell. Lx 6 6 • File InitializerType -Omega pe th Search

鸿之微科技(上海)股份有限公司

ONGZHIWEI TECHNOLOGY(SHANGHAI) CO., LTD

当选择初始化File模式时,需要你有可读的结构密度文件

Topology Solv	ver Initializer	Iteration			
UnitCell.Lx	6	UnitCell. Ly	6	UnitCell. Lz	6
<mark>Initiali</mark> zerType	File				•
Туре	Omega				•
Path					Search
参数名	物理意义	数据类型	范围	例子	备注
Туре	读取数据 类型	enum		Omega	Omega表 示读取场 /Phi表示 读取密度 初始化
Path	文件路径	String			选择密度 文件路径

Model模式下,可特殊初始化结构,可选一元 /二元的常用结构球/柱/层/连续相结构,或者 根据规则自定义结构。

pology	Solv	ver Initi	alizer It	eration					
itCell.L	æ	6	🗘 Unit	Cell.Ly	6	🗘 UnitCel	1. Lz	6	
itialize	rType	Model							
dodel In	itiali	izer Element							
Element			Unary	•	Sphere	•	BCC		2
Compo	onent	Intensity	X	Y	Z	Ra	adius		-
A	•	0.2	0.5	0.5	0.5	0.5		-	
A	•	0.2	1	1	1	0.5		-	
A	•	0.2	0	1	1	0.5		-	
A	•	0.2	1	0	1	0.5		121	25
A	-	0.2	1	1	0	0.5		-	
A	-	0.2	0	0	1	0.5		-	
				and a second					

球相关参数设定如下:

参数名	物理意义	数据类型	范围	例子	备注
Component	形成球的组分	enum	可选	А	关联前面定义的分 子结构中的组分
Intensity	强度	double	[-1,1]	0.2	默认0.2
X/Y/Z	球心坐标	double	[0.1]	0.5/0.5/0.5	
Radius	球半径	double	>0	0.5	默认0.5

鸿之微科技(上海)股份有限公司

4.3/参数设置——Initializer->Model->Cylinder

柱相关参数设定如下:

参数名	物理意义	数据类型	范围	例子	备注	-										
						omp	oner	Intensity	X	Ŷ	Z	X1	Y1	Z1	Radius	
Component						A		0.2	0.5	0.5	0	0.5	0.5		0.5	-
/Intensity/R	和球定义一致					A	•	0.2	1	1	0	1	1	1	0.5	-
aduis						А	•	0.2	0	1	0	0	1	1	0.5	
						A	•	0.2	1	0	0	1	0	1	0.5	12
	柱下底面圆心	1 11	50.13	0/0/1		A	•	0.2	0	0	0	0	0	1	0.5	
X/Y/Z	坐标	double	[0,1]	0/0/1												+
X1/Y1/Z1	柱上底面圆心 坐标	double	[0,1]	0/0/0												

指定一个层状元件,实际上层就是一个无穷 大半径的柱,层相关参数设定如下:

参数名	物理意义	数据类型	范围	例子	备注
Componen t/Intensity/ Raduis	和球定义一 致				
X/Y/Z	柱下底面圆 心坐标	double	[0,1]	0/0/1	
X1/Y1/Z1	柱上底面圆 心坐标	double	[0,1]	0/0/0	

Intensity X Y Z X1 Y1 Z1 0.2 0.5 0.3 0.5 0.5 0.8 0.5 -
*

鸿之微科技(上海)股份有限公司

IONGZHIWEI TECHNOLOGY(SHANGHAI) CO.,LTD

4.3/参数设置——Initializer->Model->Gyroid/Diamond/Primitive

参数设定如下:

参数名	物理意义	数据类型	范围	例子	备注	Model Initializer
Component	组分	enum	可选	А	关联前面 定义的分 子结构中 的组分	Component A A
Intensity	强度	double	[-1,1]	0.2	默认0.2	
Direction	方向	double	+1/-1	+1		
Threshold	阈值	double	(-1,1)	0.7	默认值0.7	

		Unary	7	Gyroid	•	Default	
Compon	nent	Intensity	Dire	ction	Threshold		
A	▼ 0.2	8	1		0.7	-	
4	▼ 0.2	ŝ.	-1		-0.7	-	
						+	

随机初始化元件,参数如下:

会粉々	物理辛义	****	计田	個之	友计	Element	Unary	*	Random	•	Default	×
少奴石	初垤息入	<u> </u>	氾凹	ן נילן	`````````````````````````````````````	Com	ponent	Inter	isity	5		
Componen t	组分名称	enum	size()>0	А				0.2			+	
Intensity	强度	double	[0,1]	0.2								

迭代相关参数,相关参数都提供默认值,请了解 完备后,再做修改。

StopCriteri	a		
Step	20000		ŧ
Incomp	1e-6		
FieldError 1e-6			
SimpleMixin	s -		
CellStress8	witch	AUTO	-
FieldAccept	ance	0.05	
ImcompCorre	ctionAcceptance	0.00	÷
CellStressA	cceptance	0. 020000	÷
CellStres	sThreshold		
Step		20	+
Incomp		0. 050000	+
FieldError		0. 020000	
AndersonMix	ing		
AndersonMix	ingSwitch	AUTO	•
MaxUsingHis	tory	2	\$
FieldAccept	ance	0.05	\$
CellStressA	cceptance	0. 10	•
AndersonM	lixingThreshold		
Step		50	\$
Incomp		0. 050000	-
FieldErro	r	0.020000	

4.4/参数设置——Iteration->StopCriteria

定义程序终止条件:

参数名	物理意义	数据类型	范围	例子	备注
Step	迭代最大步数	int	>0	100000	
Incomp	收敛判据1, 不可压缩性	double	>0	1e-6	收敛小于 此值认为 收敛
FieldError	收敛判据2, 场误差	double	>0	1e-6	收敛小于 此值认为 收敛

这里请注意,当Incomp和FieldError都满足时程序才会终止。

Step	20000		+
Incomp 1e-6			
FieldError	1e-6		
SimpleMixin	18		
CellStress8	Switch	AUTO	•
PieldAccept	tance	0.05	\$
ImcompCorrectionAcceptance		0.00	\$
CellStressAcceptance		0. 020000	ŧ
CellStres	ssThreshold		
Step		20	
Incomp		0. 050000	*
FieldError		0. 020000	-
AndersonMix	ting		
AndersonMiz	kingSwitch	AUTO	•
(axUsingHis	story	2	\$
ieldAccept	tance	0.05	•
CellStress/	Acceptance	0.10	\$
AndersonM	fixingThreshold		
Step		50	\$
Incomp		0. 050000	•
FieldErro	or	0. 020000	_

4.4/参数设置——Iteration->SimpleMixing

定义简单迭代时的相关参数:

参数名	物理意义	数据类型	范围	例子	备注
Field Acceptance	场的接受度	double	(0,1)	0.05	一般小于0.1,否则 极易发散
ImcompCorrectionAcce ptance	不可压缩性矫正的接受度	double	[0,1)	0.00	一般不会大于0.03, 否则程序极易发散
CellStressSwitch	简单迭代时是否自动优化周 期	enum	AUTO/FORCED_ON/FO RCED_OFF	AUTO	自动周期优化算法 每一次迭代额外带 来50%计算量
CellStressAcceptance	周期应力的接受度	double	>0	0.02	一般不会大于0.1, 否则程序极易发散, 或者在自由能极小 点附近震荡
CellStressThreshold/Ste p	需要的迭代步数	int	>1	20	
CellStressThreshold/Inc omp	最差需要的不可压缩性	double	>0	0.05	三者同时满足开启
CellStressThreshold/Fiel dError	需要的场误差	double	>0	0.02	

4.4/参数设置——Iteration->AndersonMixing

定义Anderson迭代时的相关参数:

参数名	物理意义	数据类型	范围	例子	备注
AndersonMixingSwitch	是否启用Anderson Mixing	Enum	AUTO/FORCED_ON/FOR CED_OFF	AUTO	一般小于0.1,否则 极易发散
MaxUsingHistory	使用Anderson Mixing时最多 使用的历史步数	int	[2,100]	50	一般而言更大的数值 会带来更好的收敛性, 但是具有O(N ³)的开 销
Field Acceptance	场的接受度	double	(0,1]	1	此数值相对简单迭代 时的接受度可以更大 一些
CellStressAcceptance	周期应力的接受度	double	>0	0.1	此数值相对简单迭代 时的接受度可以更大 一些
AndersonMixingThreshol d/Step	需要的迭代步数	int	>1	20	
AndersonMixingThreshol d/Incomp	最差需要的不可压缩性	double	>0	0.05	三者同时满足开启
AndersonMixingThreshol d/FieldError	需要的场误差	double	>0	0.02	

当参数设置好之后,单击Generate后在项目栏生成运行 准备文件,如下图所示。

Scoperiteria		
Step 10000		
Incomp 1e-6		
FieldError 1e-6		
SimpleMixing		
CellStressSwitch	AUTO	
FieldAcceptance	0.05	•
ImcompCorrectionAcceptance	0.00	
CellStressAcceptance	0.050000	÷
CellStressThreshold		
Step	20	
Incomp	0.300000	+
FieldError	0.300000	•
AndersonMixing		
AndersonMixingSwitch	AUTO	•
MaxUsingHistory	20	
FieldAcceptance	1.00	÷
CellStressAcceptance	0.10	÷
AndersonMixingThreshold	·	
Step	50	ĺ.
Incomp	0.050000	•
FieldError	0.020000	÷

如右图所示选中项目栏生成运行准备文件input.txt,右 Fle Edit View Build Simulator Window Help	×
键单击Run后出现,选择计算机器后单击run,即可开始	▲ \$
TOPS的订异。 ■ Run × □ Tops.cal Basic	
Gateway location: MyComputer(127.0.0.1) ▼ Run parallel on: 1 ♥ of 12 cores Open Containing Folder	
c >	
Properties B × Symmetry System 7 Properties Value	
Job Manager 1.	log in local successfully 🚳 🌫 🕏
Description Script	Status Actions
Run Cancel	

在Device Studio中的Job Manager中可以查看计算状态,如右图红框中。

F Device Studio				St.				2	
<u>File Edit View Build Simulator Win</u>	dow <u>H</u> elp								
Project 7 ×	} & Q &	- 23 =	- ÷ &	H 🖉 🔗	\$ of \$		ý _{∼Z} [@] →	* St	s » ⊢ »
Tops.cal V Dops Tops input.txt Properties Value									
	Job Manager					log in local s	uccessfully		\$} % \$
	Description			Script		Stat	us	Actions	
	TOPS	C:/Users/Y	/mXia/Docume	nts/DeviceStudi	oProjects/TOPS/To	ps Running			

选择input文件右键选择 Open containing Folder后打开计算结果文件

debug.txt	2020/6/15 19:55
input.txt	2020/6/15 19:44
SCFT_20200615195232_Energy.txt	2020/6/15 19:55
SCFT_20200615195232_Field.txt	2020/6/15 19:55

debug.txt	2020/6/15 19:55	
input.txt	2020/6/15 19:44	
SCFT_20200615195232_Energy.txt	2020/6/15 19:55	
SCFT_20200615195232_Field.txt	2020/6/15 19:55	

打开图中的能量文件,在文件最后,如下图所示得到最后的值

选择Device Studio中Simulator->Tops->Anlysis Plot 打开Field 文件分析计算的结构文件。

debug.txt	2020/6/15 19:55
input.txt	2020/6/15 19:44
SCFT_20200615195232_Energy.txt	2020/6/15 19:55
SCFT_20200615195232_Field.txt	2020/6/15 19:55

Liunx AB两嵌段共聚物计算BCC结构

a/参考之前设置Linux计算设备和文件路径;

b/ 设定Block, 创建AB两嵌段分子, 然后A的Length设定成0.15, B的Length设定成0.85, 同一分子的length的总和最好为1.0, 否则会自动归一化;

c/ 设定Slover参数, 全部选择默认;

soy Number 1 Image: Component Name A B sume Fraction 1.0 Segment Asymmetry 1 sok Image: Component Name Style Length scretizatic Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name Image: Component Name		S	olver I	nitializer	Iteratio	n							
interaction Image: Component Name A B Segment Asymmetry Image: Component Name Segment Asymmetry Specy Block Left id Right id Branch Style Length scretizatic Image: Value Image: Value Image: Value Image: Value Image: Value Image: Value Image: Value Image: Value Image: Value Image: Value Image: Value Image: Value Image: Value<	pecy						Se	gmentAsymmti	у				
sume Praction 1.0 Segment Asymmetry 1 sok Specy Block Left id Right id Branch Style Length scretizatic A 0 1 1 LEFT_B 0.15 0.01 - 	pecy N	ſumbe	r 1			-	Cor	mponent Nam	e A	ιВ			
er action Component Name Interaction	olume	Frac	tion 1.0				Se	gment Asymm	etry 1	. 1			
Specy Block Left id Right id Branch Style Length scretizatic • A 0 1 1 LEFT_B • 0.15 0.01 - • B 1 2 1 LEFT_B • 0.85 0.01 - • B 1 2 1 LEFT_B • 0.85 0.01 - • I I I I I I I -	lock —												
• A 0 1 1 LEFT_B • 0.15 0.01 - • B 1 2 1 LEFT_B • 0.85 0.01 - • B 1 2 1 LEFT_B • 0.85 0.01 - • B 1 2 1 LEFT_B • 0.85 0.01 - • B 1 2 1 LEFT_B • 0.85 0.01 - • B 1 2 1 LEFT_B • 0.85 0.01 - • Interaction Interaction Interaction Interaction Interaction	Sper	CV.	Block	Left id	Right id	Bra	anch	Style	Len	ath	scretizatio		
· ·	0	-, ,	A	0	1	1	en	I FFT R -	0.15	9	0.01	-	
eraction Component Name A0	0		D	1		1			0.05		0.01		
eraction Component Name Interaction B 40	0		D		2	1		LCFI_D V	0.00		0.01	-	
eraction Component Name Interaction B 40									1.000	<u>1</u>		+	
	4 B						40						
Generate Canc											Generate	Can	cel
												- 4 5	

鸿之微科技(上海)股份有限公司 HONGZHIWEI TECHNOLOGY(SHANGHAI) CO.,LTD

d/ 设定Initializer参数,将Lx/Ly/Lz全部设定成4.5,选择InitializerType 为Model; 然后选择Sphere->BCC

e/ 设定Iteration参数,全部选择默认,然后Generate。

f/ 选中项目栏的input文件右键run, 即开始运行程序。

InitializerType Model delInitializer Element sement Component Intensity 0.2 0.5 0.2 0.5 0.2 1 1 0.5 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 0 1 0 0.5 - 0.2 0 1 0 0.2 0 1 0 0.2 0 1 0 0.5 - 1 0 0.5 -	Cell. Lx	4.5	🗘 Uni tCe	all Ly 4	.5 🛟	UnitCell. Lz	4.5	÷
Sphere Vser ement Sphere Vser Component Intensity X Y Z Radius A 0.2 0.5 0.5 0.5 0.5 - A 0.2 1 1 0.5 - A 0.2 1 1 0.5 - <	ializerType	Model			1.45			¥
enent Sphere V Z Radius Image: Component of the second of the	delInitiali	zer Element -						
Component Intensity X Y Z Radius A 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.2 1 1 1 0.5 - 0.5 0.2 0 1 1 0.5 - 0.5 0.2 1 0 1 0.5 - 0.5 - 0.2 1 0 1 0.5 - - 0.2 - - 0.2 1 1 0 0.5 - - - - - 0.2 0 0 1 0.5 - <	ement		Sphe	re	•	Vser		•
0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.2 1 1 1 0.5 - 0.2 0 1 1 0.5 - 0.2 1 0 1 0.5 - 0.2 1 0 1 0.5 - 0.2 1 1 0 0.5 - 0.2 0 0 1 0.5 - 0.2 0 0 1 0.5 - 0.2 0 1 0.5 - - 0.2 0 1 0 0.5 - - 0.2 0 1 0 0.5 - - 0.2 0 1 0 0.5 - -	Component	Intensity	x	Y	Z	Radius		^
0.2 1 1 0.5 - 0.2 0 1 1 0.5 - 0.2 1 0 1 0.5 - 0.2 1 0 1 0.5 - 0.2 1 0 1 0.5 - 0.2 0 0 1 0.5 - 0.2 0 1 0 0.5 - 0.2 0 1 0 0.5 - 0.2 0 1 0 0.5 -	•	0.2	0.5	0.5	0.5	0.5	-	
0.2 0 1 1 0.5 - 0.2 1 0 1 0.5 - 0.2 0 0 1 0.5 - 0.2 0 0 1 0.5 - 0.2 0 1 0 0.5 - 0.2 0 1 0 0.5 - - 0.2 0 1 0 0.5 - -	•	0.2	1	1	1	0.5	20	
0.2 1 0 1 0.5 - 0.2 1 1 0 0.5 - 0.2 0 0 1 0.5 - 0.2 0 1 0 0.5 - 0.2 0 1 0 0.5 - -	. -	0.2	0	1	1	0.5	-	
0.2 1 1 0 0.5 - 0.2 0 0 1 0.5 - - 0.2 0 1 0 0.5 - - -	· •	0.2	1	0	1	0.5	-	
0.2 0 0 1 0.5 - 0.2 0 1 0 0.5 -	•	0.2	1	1	0	0.5		
▲ ▼ 0.2 0 1 0 0.5 · v	· •	0.2	0	0	1	0.5		
	· -	0.2	0	1	0	0.5	1411	

鸿之微科技(上海)股份有限公司 HONGZHIWEI TECHNOLOGY(SHANGHAI) CO.,LTD

g/当计算结束后,选择右侧下载按钮将计算结果文件 传回本地,然后再做数据分析。

鸿之微科技(上海)股份有限公司

如果您有什么问题请及时联系我们: support@hzwtech.com

THANKS

