完整案例操作流程

- 1. 工程建模
- 1.1. 主窗口

主窗口分为三个部分,如图 1-1 所示。其中(1)主菜单位于顶部,(2)项目树位 于左侧,以及(3)内容面板占据窗口的其余部分。在"项目树"和"内容面板"之 间有一个垂直分隔线,用户可以将"项目树"面板变宽或变窄以适应操作的便捷。

□ 日 日 电子产品可靠性综合评估软件(CRAFE2.0)		
- 工程 电路板组件 数据库 工具 後	置 帮助	
日本 福祉 导出 日本 福祉 日本 日本		
工程 > 导入EDA文件	电路板 结果	
u 11 (* 1		
● ● 电线带寿命 ● ① 任务有理集合 ● ① 任务有理集合 ■ ○ 新務目10年) - ○ 洋名新羅(10年) - ご正然版功 ● 温度工尺	3	电子产品可靠性综合评估软件平台 Comprehensive Reliability Assessment For Electronics QLAVIC 03061869582-2019, FIDES. ANSI/VITA 512-2016, T/CAQ10109-2019
 ◎ 随机振动 ◎ 电路板建模 ◎ te ◎ te ○ te ○ te 		
cosp-bot. odb		
S coap-top. odb		
scopper-01.odb		
drill-01. odb		
🗮 silk-bot. odb		
🧱 silk-top.odb		
🔣 sa-bot. odb		
🗮 sa-top. odb		
□ ② 输入		
■ 器件列表		
雪 馬姦		

图 1-1 主窗口

1.2. 创建建工程

点击"新建"按钮,系统会弹出"创建工程"弹框,按提示填写"工程名称"、 "工程简介",输入完成后点击"保存",如图 1-2 所示。

0	工程	电路扳组体	\$ 数据	库 工具	1 1	2 置	帮助	
[+ 新建		₩	尋入ODB	₽λGenCAD	尋入IPC -2581	11 78 ho	区 导入	清除结果
8	工程	≫		导入EDA文件		电	諸板	结果
	电路极寿命 ④ 任务的周集师 ● ① 任务的版: ● ① 任务的版: ● ① 任务的版: ● ② 任命的版: ● ③ 使 ● ◎ ● ● ● ● ◎ ● ● ● ●	合 (10 年) :(10 年) :法据助 读加不成 :法指示 :(1) :(1	ib ib odb odb ib ib ib					

图 1-2 新建工程

- 2. 任务剖面建模
- 2.1. 编辑任务剖面集合

任务剖面定义了项目所需的可靠性目标,以及产品在项目生命周期中所面临 的各种环境压力。在"任务剖面集合"上点击鼠标右键,在弹出的提示框中点击 "编辑属性",系统会弹出任务剖面集合编辑框,如图 2-1 所示。用户根据提示输 入可靠性目标。可靠性目标包括"可靠性指标"、"工作寿命"。其中可靠性指标有 "可靠度"、"失效率"、"MTBF"等。点击"保存"完成对信息的编辑,如图 2-2 所示。

图 2-1 选择任务剖面集合

可靠性目标					
可靠性指标:	20		不可靠度 (%) 🖌		
工作寿命:	10 年 ~				

图 2-2 编辑任务剖面集合

2.2. 编辑任务剖面

在"任务剖面"上点击鼠标右键,在弹出的提示框中点击"编辑属性",系统 会弹出任务剖面编辑框,如图 2-3 所示。用户根据提示输入任务剖面的基本信息。 基本信息包含任务剖面的"名称"、"描述"点击"保存"完成对信息的编辑,如图 2-4 所示。(注:用户可根据实际剖面信息添加多个剖面或多个阶段,如图 2-3 所示)

图 2-3 选择任务剖面

任务剖面文件 利用在不同的	或者通过)工程或者	过[保存任务剖面]菜单保存当前任务剖面到文件中,任务剖面文件可以被 皆分享给其他CRAFE用户
基本信息		
	名称:	任务剖面
	描述:	
đ	記(%):	100

图 2-4 编辑任务剖面

- 2.3. 编辑工况
- 2.3.1. 编辑冲击振动

右键双击"冲击振动",系统会弹出冲击编辑框,用户根据提示输入基本信息、冲击工况设置、冲击载荷设置和冲击脉冲谱。冲击工况包含"形状"、"载荷"、 "频率"、"衰减",右键点击工况列表可以添加、复制、删除不同阶段;基本信息包含随机振动剖面的"名称"、"描述";冲击工况设置设置产品的时长和循环次数;冲击载荷设置设置产品的"峰值载荷"、"PCB方向"和"加载方向";冲击脉冲谱显示冲击脉冲剖面图。点击"保存"完成对信息的编辑,点击"重置"可重新输入信息,如图 2-5 所示。

RAX T 国的任 雪陽 性 井 忠 社 (保存) 接租 更新 中 由. 基本信息 名称: [+ 牛 類 物 描述: - 中 击 数 中 辺 加載 方 府: X 0 V 0 Z -1) (新子 次 款: 10 文 文 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	冲击编辑框	Ī					1
	多改下面的任意属	性并点	击[保存]按钮,更新	形冲击.			
	基本信息						
描述 小由载荷设置 B大: 10 25 ~ 山楂黄润: 100 0 ~ 加载方向: X 0 ~ 0 ~ 小山黄润方向: X 0 ~ 0 ~ 小山黄润方向: X 0 ~ 0 ~ 小山黄河市: X 小山東 0 ~ 小山黄河市: X 小山東 0 ~ 小山黄河市: X 小山東 0 ~ 小山東市 100 ~ 水井 幸: 0.1 25 ~ 「水井 幸: 0.1 26 ~ 「水井 幸: 0.1 10.0 「水井 幸: 0.1 10.0 「小村 寺: 0.1 10.0 「山東 古 幸: 0.1 10.0 「山東 古 幸: 0.1 10.0		名称:	冲击振动				
/#由数荷设置 ·····························		描述:					
冲击载荷设置 Bit: 10 20 Imit 环次载: 10 20 Imit Transport Imit Transp							
周末: 10 25 山崎健牧府: 100 6 加穀方方向: X0 Y0 水土酸水中谱 100 2 水土酸水中谱 100 25 「東本単位: HZ 送筷: 水甘葉: 10.0 0.1 「秋秋 整荷 「淡菜 「水秋 整荷 「淡菜 「日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日							
助子子、10 10	冲击载荷设置	n+.k-	40			SHEET Marthy 40	
山田秋方前: X0 0 0 2 -1 沖土銀小道 山東大方前: XY角度 0 V2角度 0 沖土銀小道 山東大方前: XY角度 0 V2角度 0 沖土銀小道 山東小村村: 100 100 100 100 100 形状 玉荷 坂本 東成 100 100.0 0.1 野(10.0) 100.0 0.1 100.0 10		ng 10.			1 × · · ·		
加数方向: X 0 Y 0 Z -1 冲击脉冲谱 谐名称: 默认家湾潭 略2中时长: 100 至9 频率单位: HZ 9 送班: X轴对数标度 下状 整荷 频率 衰減 <u>半正弦 10.0 100.0 0.1</u> 加酸谱 保存書 双眼 课	山筆伯	[载荷:	100		G ~	PCB方向: XY角度 0 YZ角度 0	
加速酸中毒 酸、中毒、酸、中毒、酸、中毒、酸、、、、、、、、、、、、、、、、、、、、、、、	加载	访向:	X 0	v 0 z	-1		
谐谷桥: 野小时子: 100 至步 默认载荷谱 频车单位: N 送场: X組対数标度 予比状 整荷 送场: Y組対数标度 10.0 0.1 000 0.1 加動遣… 保存書…	冲击脉冲谱						
采祥芊: 0.1 至少 → 载荷单位: ○ 頭索单位: HZ → 送班: X油对数标度 ●	谱名称:	默认载	荷谱	脉冲时长: 10.0) 素砂 ~	默认载荷谱	
		0.1		\$XIPJ+112.		6	
	频举单位:	HZ	~	选项: 🔡)	X轴对数标度		
					Y轴灯数标度	5	
<u> 単正弦 10.0 100.0 0.1 0 次日 保存 電 取 近 転 の の に の の に の の の の の の の の の の の の の</u>	形状		载荷	频率	衰减		
	半止弦	10.0)	100.0	0.1		
加影谱… 保存谱… 立即 保存 理書 取道 解助						袋 3	
加影谱… 保存谱… 立田 保存 華雪 取道 整助							
加影谱… 保存谱… 立思 保存 筆書 取道 整助						2	
0 0 0 1 2 3 4 5 6 7 8 9 10 时何(選秒) 町町(選秒)							
0 0 1 2 3 4 5 6 7 8 9 10 时间(進秒) 2 5 5 5 5 5 5 5 5 5 5 5 5 5							
						0 1 2 3 4 5 6 7 8 9 1	0
加載這… 保存這…						时间(毫秒)	
加載這… 保存書…							
应用 保存 重置 取消 帮助				ţ	加載谱 保存i	谱	
			应	用保存	重智	取消を設定していた。	

图 2-5 编辑冲击振动

2.3.2. 编辑正弦振动

右键双击"正弦振动",系统会弹出正弦振动编辑框,用户根据提示输入基本信息、正弦振动设置、正弦振动载荷设置和正弦振动载荷谱。正弦工况包含"频率"、"方差"、"载荷",右键点击工况列表可以添加、复制、删除不同阶段;基本信息包含正弦振动剖面的"名称"、"描述";正弦振动设置设置产品的时长、循环次数和扫描频率;正弦振动载荷设置产品的"PCB方向"、"正弦振动谱类型"; 正弦振动谱显示正弦振动剖面图。点击"保存"完成对信息的编辑,点击"重置"可重新输入信息,如图 2-6 所示。

图 2-6 编辑正弦振动

双击正弦振动载荷谱列表"方差一栏",系统会弹出编辑正弦振动谱,可以 设置振动是否符合正态分布。当振动频率服从正态分布时,设置频率的期望和方 差。在进行针对应力确信可靠度评估时,会对振动进行抽样进行固有频率可靠度 和振动应力可靠度评估。如图 2-7 所示。

ÇĘ	正弦振动	扁辑框							×
修	改下面的任意属	副性并点	击[保存]按钮,更新	f正弦振动].				
Ĕ	基本信息								
		名称:	正弦振动]	
		描述:						7	
	正弦振动载荷	设置	(n		1-5-	773b-111	
		CE 4	辑正弦振动	普			X	50	古空比(%) ~
	扫	此对词	后框用于编辑正弦	一 振动谱的ì	己录,可以设置	频率的正	态分布的期	方向: XY角度 0	YZ角度 0
		望和方	差。						
			频率分布:	正态分布			~		
ī	E弦振动谱		频率(期望)	10.0		HZ	~		
	ha		*方美:						
	谱之称		*标志·	10		G	~		
			#APD+					默认载荷i	推
	蚁何甲 亚			确定	取消				
	频率 (H	z)	方差	_	载荷 (G)	~		
	10.0			┛┤	1.0		4(G		
	1000.0				1.0		教 0.5		
							0.0	200 400	600 800 1.000
								频率 (H	HZ)
					加载谱	保ィ	字谱		
			应用		保存	重置	取消	帮助	
								and the second	

图 2-7 编辑正弦振动谱

2.3.3. 编辑温度工况

右键双击"温度工况",系统会弹出温度编辑框,用户根据提示输入基本信息、温度工况设置和温度载荷谱。温度工况包含"步骤"、"类型"、"时间"、"温度"、"方差",右键点击工况列表可以添加、复制、删除不同阶段;基本信息包含温度剖面的"名称"、"描述";温度工况设置产品的循环次数和工作状态;温度载荷谱显示温度剖面图。点击"保存"完成对信息的编辑,点击"重置"可重新输入信息,如图 2-8 所示

CE	温度编辑框											×
修	改下面的任意	属性并点击[保存]按钮,更新温加	<u>Ē</u> .								
	基本信息											
		名称: 温度工	38									
		描述:										
		2011 Can										
	温度工况设置											
	循环次数: 100 占空比(%) ~ 状态: 工作 ~											
	且度载荷谱											
	谱名称:	T1焊点疲劳温a	兒 时	间单位: 分		~			「1焊点	怎疲劳温况	2	
	温度单位:	с	~				50					1
ſ	1 - 002	MC TU	n+//2) El sór	**	_	40					
	步骤	类型	的问	温度	力左	- ~	30					
Ľ	13	保持不变	100.0	-30.0	-		G 20		-			L.
	14	线性变化	10.0	20.0	-		到 10					
	15	保持不变	120.0	20.0	-		³⁴ 0 -					
	16	线性变化	10.0	55.0	-		-10					
Ľ	17	保持不变	100.0	55.0	-		-20					
	18	线性变化	10.0	20.0	-		-30		Ц.			
	19	保持不变	120.0	20.0	-		o		500	1,000	1,500	2,000
	20	线性变化	10.0	-30.0	-	~				时间 (分)		
							_					
				t	「载谱	保有	子谱					
			应用	保存	重習		取消		帮助			

图 2-8 编辑温度工况

双击温度载荷谱列表"方差",弹出编辑对话框,如图 2-9,可以编辑该阶段 的"步骤",选择"温度类型","线性"或"非线性"。还可以可以设置温度是否 符合正态分布。当温度服从正态分布时,设置温度的期望和方差。在进行温度应 力确信可靠度评估时,会对温度进行抽样生成对应的仿真样本。

图 2-9 编辑温度谱

2.3.4. 编辑随机振动

右键双击"随机振动",系统会弹出随机振动编辑框,用户根据提示输入基本信息、随机振动设置、随机振动载荷设置和随机振动载荷谱。随机工况包含"频率"、"加速度功率谱密度",右键点击工况列表可以添加、复制、删除不同阶段;基本信息包含随机振动剖面的"名称"、"描述";随机振动设置设置产品的时长、循环次数和扫描频率;随机振动载荷设置产品的"PCB 方向"、"随机振动谱类型";简谐振动谱显示随机振动剖面图。点击"保存"完成对信息的编辑,点击"重置"可重新输入信息,如图 2-10 所示。

國 随机振动编辑框			×
修改下面的任意属性并点	击[保存]按钮,更新随机振动.		
基本信息			
名称:	随机振动		
備法			
HAYE.			
随机振动载荷设置			
时长:	10 小时	→ 循环次数:	1 次 ~
DCR古向			# to
rebyjuj.		恒天至,	
PUEN7 LOTE AVJUE			
加载万同:	X 0 Y 0	Z -1	
谱法	2.称: 默认载荷谱		
	40 (million - 1)	黒	犬认载荷谱
频率与		۲ <u>۲</u>	
加速度功率谱密度单	单位: G2/Hz	32/H	
ì	选项: 🗌 X轴对数标度	2.0E-3	
	■ V轴对数标度	2011	
		衡	
频率 (HZ)	加速度功率谱密度 (G2/Hz)	骨 1.0E-3	-
10.0	0.001	(夏)	
1000.0	0.001	赵	
1500.0	0.002	₹ 0.0E0	500 1.000 1.500 2.000
2000.0	0.0025		频率 (HZ)
2000.0	0.0013		
	加裁谱	保存谱	
	6-H		#RBb
	<u>赵用</u> (朱仔	里直	带则

图 2-10 编辑随机振动

3. 电路板建模

3.1. 导入电路板 odb 文件

点击"导入 ODB",系统弹出导入 ODB++文件导入框,用户根据提示选择 导入的 ODB++文件;输入"工程名称"、"电路板组件名称";选择"指定层厚度"、 "包含其它层"、"工艺切口"等。点击"扫描",系统将会在指定文件中扫描所 需文件;点击"重置"可重新输入信息,如图 3-1 所示。ODB++文件通常以单 个压缩文件的形式传输,后缀为".tgz"或".tar.gz"。

8

	\rightarrow		\rightarrow	ODB				000		× 100										
航建	导人	唐 住	导出	导入OD	B =	≩∧GenCAD	导入IPC -2581	汤加山	导人	清除结果										
	工程		»		导	入EDA文件		电	路板	结果										
🧧 测试					^ '															_
😑 🔕 ∉	自路板寿命	î							CE	导入 ODE	++ 文件									×
0 ()任务剖	面集合							输入	全路径的目录	或者压缩包。	文件,包含	ODB++	文件将被	导入. 编	念可以通过	浏览按钮	从文件系统	充中选择	E
E	🛛 🜔 任务	骑面(10 年)						灵虹	者又件。怒中	」以设置新的	L 桯名 和 印	书游板组(牛名称。如	果电路	版名称为3	2、将使户	却又件名作	为名称。	.
	B 🕅	阶段1(10 年)							*ODB++	文件:								浏览	
		く冲き	振动							I	程名:	测试						-	_	
		∕ 正弦	振动							电路板组件	名称:									
		🤊 温度	【工况								松中尼度度·		2							
		◎ 随机	振动																	
8	3 电路板	建模								西 选择	相录或文	件							×	
e	🛚 🔕 te	-																		
	Ξ 🔗	EDA设计	-文件							查看:	tutorial				~				<u> </u>	
		comj	-bot. c	db					石	test 📜	odb									
		🖂 comj	-top.c	db						新建	文件夹									
		Copj	per-01.	odb																
		Copj	per-02.	odb																
		dri.	11-01. c	db	:															
		Sill	-bot.c	db	:															
			top. c	db																
		sm-I	oot. odt							文件名:	D:\clier	nt\tutorial								
		ta X	top. oad							文件类型	: ODB++	压缩包 (*.	.tgz, *.tai	.gz, *.tar)				~		
	• •	111八	· Sulæ											6				-		
		프 63년 도 문 중	-2148											l	远择自	国家毗又件		耿沪		
										1	扫描		雷思	取当		からなますのへ	DB++			
		一 phi/4	ι kfr								3-314		ANI ANI	43(19)		AUGRAN	0011			
			振动																	
			1.016.48.1 1.016.48.1																	
		🥑 (天心 🦱 ー ー	· - 1 1																	

图 3-1 导入 odb 文件

ODB 文件可以通过 Altium Designer 导出,具体导出步骤如下,先点击工具 栏的"文件"->"制造输出"->"ODB++Files"如图 3-2 导出 ODB++文件,弹出 导出 ODB++文件设置的对话框如图 3-3,选择需要导出的层,默认无需修改导出 即可。生成的 ODB++文件目录在 Altium Designer 的工程 Generated 目录的 Text Documents 下,具体系统路径可以鼠标移到节点上可以看到或者双击打开软 件的左上方显示文件路径如图 3-4 所示。导出的 ODB++是一个文件夹,大致包 含 fonts、input、matrix、step 等目录如图 3-5 所示。

D <u>X</u> P 文件	(E) 编辑(E) 察看(V)	工程(C) 放置(P) 设计(D) 工具(T)
	新建(№) ▶	Q 🐝 🐼 🛦 🗈 🛍 🖾 🗐 🗔 🕂 🗧
Projects 凒	打开(<u>O</u>) Ctrl+O	🗸 🕂 🗙 双面板菲
Workspa	导入([)	▼ 工作台
电源.Prjf	关闭(<u>C</u>) Ctrl+F4	工程
💿 File Vie	打开工程(1)	
	打开设计工作区(达)	
	检出	
	保存(S) Ctrl+S	
	保存为(A)	
	保存拷贝为(Y)	
	全部保存(L)	
⊕ ⊯ ∎	保存工程为	
	保存设计工作区为	
	制造输出(E) 🕨 🕨	Report Board <u>S</u> tack
	装配输出(B)	Composite Drill <u>G</u> uide
	页面设置(U)	<u>D</u> rill Drawings
E Fre	打印预览(<u>V</u>)	Final
=	打印(P) Ctrl+P	Gerber Files
	缺省打印(工)	<u>M</u> ask Set
2	智能 PDF(<u>M</u>)	NC Drill Files
	导入向导	DDB++ Files
	最近的文件(<u>R</u>) ▶	Test Point Report
	最近的工程 ▶	
	最近的设计工作区 ▶	
	退出(X) Alt+F4	

🝂 Altium Designer (14.2) - E:\瑞盈智能\学习资料\AD\射频电路电源板\备选板.Pcbl

图 3-2 导出 ODB++文件

回线的层			机械层到添加	所有画线
路	备选板	画线	层名	画线
-topoverlay	Top Overlay	~	-Mechanical 1	
-toppaste	Top Paste	✓	-Mechanical 13	
-topsolder	Top Solder	✓	-Mechanical 15	
-top	Top Layer	✓		
- bottom	Bottom Layer	✓		
- bottomsolder	Bottom Solder	✓		
- bottompaste	Bottom Paste	✓		
= bottomoverlay	Bottom Overlay	✓		
mechanical1	Mechanical 1	✓		
mechanical13	Mechanical 13	✓		
mechanical15	Mechanical 15	✓		
- keepout	Keep-Out Layer	✓		
All Layers	All Layers			
Electrical Layers	Electrical Layers			
Signal Layers	Signal Layers			
Component Layers	Component Lay	/ŧ		
混杂的选项(M) (M) □包括未连接的中间层焊盘(I) (J)	选择将	要生成。	ODB++'Profile'层的PC	B层或者板
□产生 DRC规则导出文件(.RUL)(G) (G	5) Board	Outline	0	~
国线层(P)(P) ▼				

图 3-3 导出 ODB++文件设置

Norman Anton (1997) 11 11 11 11 11 11 11 11 11 11 11 11 11	₩ ₩900 存存 2 首 首 > 3 日
Projects 🔻 🖛 🗙	● 双面板菲林模板.cam ■ 备选板.PcbDoc 🕀 CAMtastic2.Cam。 📄 components 📄 featu
Workspace1.DsnWrk 👻 工作台	# #Component attribute names
电源.PrjPCB 工程	
File View O Structure Editor	01.comp_height
🗄 🛄 Settings	# CMP 0
🖃 📄 Embedded_TFT_LEDs.PrjEmb	CMP 0 -1.1213787 1.0921547 180 N Designator7 Comment ;0=1,1=0.0551
E Source Documents	TOP 0 -1.1215834 1.0936311 180 N 26 7 Designator7-1
TFT_LEDs.SwPlatform	TOP 1 -1.1815834 1.0936311 180 N 4 0 Designator7-2
👩 main.c	+
🕀 🛄 Other Documents	# CMP 1
□ 🚽 电源.PrjPCB *	CMP 0 -1.1213787 1.0121547 180 N Designator6 Comment ;0=1,1=0.0551
🖃 🛄 Source Documents	TOP 0 -1.1215834 1.0136311 180 N 26 8 Designator6-1
power.SchDoc	TOP 1 -1.1815834 1.0136311 180 N 4 1 Designator6-2
B power.PcbDoc	+
III 备选板.PcbDoc	# CMP 2
CAMtastic1.Cam	CMP 4 -0.0813787 0.7671547 270 N GND Comment ;0=2,1=0.0551
CAMtastic2.Cam *	TOP 0 -0.0813787 0.7671547 270 N 26 33 GND-1
🗄 🧰 Settings	TOP 1 -0.0813787 0.8671547 270 N 26 34 GND-2
🕀 🛄 Libraries	TOP 2 -0.0813787 0.9671547 270 N 26 35 GND-3
🖃 🚞 Generated	+
E Documents	# CMP 3
🖃 🛄 Text Documents	CMP 4 -0.1013787 1.1921547 270 N Designator3 Comment ;0=2,1=0.0551
odb\steps\pcb\layers\comp_+_top\compor	TOP 0 -0.1013787 1.1921547 270 N 4 2 Designator3-1
 dob/steps/pct/v dob/steps/pct/v Et 储盈智能/学习资料\AD/射频电路电 	頭板'Project Outputs for 电源 \odb \steps \pcb \layers \comp_+_top \components3
adb/steps/pch/layers/bottomosta/feature	10F 5 -0.1015/8/ 1.492154/ 2/0 M 4 5 DESIGNACOT5-4
adb/steps/pcb/layers/bottompaste/feature	+ CMD 4
adb/steps/pcb/layers/somp + top/featurer	# CMP 4
adb/steps/pcb/layers/comp_+_top/reacures	CMP 4 -1.4913787 0.9121547 180 N 4 C Comment ;0=2,1=0.0551
db/steps/pcb/layers/keepout/features	TOP 1 -1.4913787 0.9121547 180 N 4 6 VC-1
db/steps/pcb/layers/mechanical1/features	TOP 2 -1 6012707 0 0121547 100 N 4 9 VC-2
db/steps/pcb/layers/mechanical13/feature	TOP 2 -1 7012707 0 0121547 100 N 4 0 VC-5
adh/steps/pcb/layers/mechanical15/feature	10F 3 -1./513/8/ 0.512134/ 180 N 4 5 VC-4
a fastures	T A CMD 5
adh\stens\nch\lavers\ton\features	WD 4 -1 2162707 0 2771547 0 N VD Correct +0-2 1-0 0551
db/steps/ptu/layers/topoverlav/features	TOP 0 _1 2162787 0 2771547 0 N 10 4 VD_1
adh/steps/pcb/jayers/toppaste/features	TOP 1 -1 1163787 0 3771547 0 N 10 4 VD-1
adh/stens/prb/lavers/topsolder/features	TOP 2 -1 0163787 0 3771547 0 N 10 5 VD-2
odb/matrix/matrix	TOP 2 -0 0162707 0 2771547 0 N 10 7 VD-4
db/stens/nch/netlists/cadnet/netlist	101 3 -0.5103/0/ 0.3//134/ 0 N 10 / VD-4
db/steps/pcb/netists/cauter/netist	+ CMP 6
adh/steps/pcb/pronie	CMP 4 -1 4963787 1 0471547 180 N VDD Commant :0-2 1-0 0551
db/steps/pcb/lavers/drill/tools	TOP 0 _1 4063797 1 0471547 100 N 1 13 VDD_1
db/steps/pcb/layers/cont/tools	TOP 1 -1 E002787 1 0471547 100 N 1 13 VDD-1
□ 各洗板 ppp	TOP 2 _1 6069797 1 0471547 100 N 1 15 VDD-2
	TOP 2 -1.0303/0/ 1.04/134/ 100 N 1 13 VDD-3
	TOP 3 -1./303/0/ 1.04/134/ 100 M 1 10 VDD-4
- Source Documents	
 Source Documents 双面板非林模板 cam 	# CMP 7

图 3-4 文件路径

名称	修改日期	类型	大小
📕 fonts	2020/10/28 22:39	文件夹	
🧵 input	2020/10/28 22:39	文件夹	
💄 matrix	2020/10/28 22:39	文件夹	
📜 misc	2020/10/28 22:39	文件夹	
steps	2020/10/28 22:39	文件夹	
symbols	2020/10/28 22:39	文件夹	

图 3-5 ODB++文件目录结构

ODB ++文件中的 PKG 封装关键字和 CMP 元器件关键字, PKG 的记录后面紧 跟着 RC、CR、SQ、CT、OB、OS、OC、OE、CE 的外轮廓记录。在 CRAFE 安装目 录下,在 client.properties 中设置 useContour=true, 就可以解析封装的外轮廓信 息。

3.2. 完善器件列表

双击"器件列表",系统弹出所有器件信息。器件列表包括 ID、位置、封装、 引脚、焊盘、焊球、焊点、电、温度、介质和散热片等属性标签,双击任意器件, 系统弹出该器件属性编辑框,如图 3-6 所示。用户需要在仿真前完善器件列表 的信息。

图 3-6 器件属性

双击"器件列表",系统弹出所有器件信息。器件列表包括 ID、位置、封装、引脚、焊盘、焊球、焊点、电、温度、介质和散热片等属性标签,双击任意器件, 系统弹出该器件属性编辑框,如图 3-6 所示。用户需要在仿真前完善器件列表的信息。

3.3. 添加安装点

在"电路板组件"菜单栏中点击"编辑安装点",在电路板上右键点击"添加安装点",系统弹出添加安装点编辑框,输入安装点属性、类型和有限元设置信息完成对安装点的编辑,如图 3-7 所示。

安装点的形状有矩形、圆形、多边形和槽口等类型。

矩形: 由长度和宽度尺寸, 中心位置和旋转角度定义。

圆形:由直径,节点数,中心位置和旋转角度定义。

多边形: 由长度和宽度尺寸, 节点数, 中心位置和旋转角度定义。

槽口:由一组节点位置和旋转角度定义。

使用"圆形"和"槽口"形状可以指定在逼近用于形成那些形状的圆弧时要 使用的节点数。对于圆形,节点沿圆的圆周均匀分布。对于槽形状,使用 4 个 节点定义槽的矩形部分,其余节点沿槽两端的半圆均匀分布。

对于所有形状,可以指定旋转角度以在 XY 平面中旋转形状。使用控制点以 图形方式缩放形状时,将保留旋转角度,并且形状尺寸会自动更新以反映缩放操 作。

在电路板下方点击"保存",可完成对安装点的保存,如图 4-36 所示;

青輸入安装点所需的属性 会装点属性		
安装点ID:	MP1	Mount Holo
安装点类型:	Mount Hole 🗸	Mount noie
安装点单位:	mm 🗸	
安装点的面:	背面	
安装点高度:	0.0	
安装点材质:	DEFAULT	
安装点状态:	是 ~	
重型(克):	0.000e+0	\bullet = Center Constrained
安装点类型		• = Outline Constrained
形状:	矩形 ~	• Otomic Outstantion
长度:	10	
宽度:	5	
中心点(X):	285.0477	
中心点(Y):	245.2307	
旋转(度):	0.0	
有限元仿真设置		
边界的点:	Outline	
FEA约束:	 ✓ X-axis translation ✓ Y-axis translation ✓ Z-axis translation 	
底盘材质:		
	/P7=	

图 3-7 添加安置点

安装点编辑器 保存 应用 重置 关闭 帮助

图 3-8 保存安装点

点击"应用",可完成对现有安装点的应用;点击"重置"可重新编辑安装 点,点击"完成",退出该界面,点击"帮助",查看帮助信息。 3.4. 添加键合丝

在"电路板组件"菜单栏中点击"编辑键合丝",在电路板上右键点击"添加键合丝",系统弹出添加键合丝编辑框,输入键合丝属性、位置和尺寸信息完成对键合丝的编辑,点击"保存"完成对信息的编辑,点击"重置"可重新输入信息,如图 3-9 所示。

56 编辑键合丝属性	×
輸入键合丝的属性:	
ID:	WB1
板面:	正面~
材料:	ALUMINUM
单位:	mm 🗸
位置	
开始点X:	296.2696
开始点Y:	233.1498
结束点X:	308.9696
结束点Y:	233.1498
尺寸图	
导线厚度:	0.1
左側长度:	1
右侧长度:	1
弧的高度:	4
弧的角度(0~1):	0.0
保存	臣置 取消

图 3-9 键合丝属性

在电路板下方点击"保存",可完成对键合丝的保存,如图 3-10 所示;

图 3-10 添加键合丝

点击"应用",可完成对现有键合丝的应用;点击"重置"可重新编辑键合 丝,点击"完成",退出该界面,点击"帮助",查看帮助信息。

- 4. 仿真分析
- 4.1. 冲击振动分析
- 4.1.1. 运行冲击振动

右键点击"冲击振动",系统弹出选择框,如图 4-1 所示。

图 4-1 选择冲击振动

在选择框中选择"运行分析任务",系统弹出冲击振动分析属性框。仿真属 性中有冲击结果次数、阻尼因子、最小频率、最大频率和温度属性。"冲击结果 次数"属性设置生成冲击振动结果云图层的数量。"阻尼因子"属性设置电路板 卡组合的阻尼,可防止仿真过程中出现震荡,默认值为-0.05。设置"最小频率" 和"最大频率"软件会自动在这个频率内算出固有频率。如图 4-2 所示。

中击振动:	分析属性					>
指定所需的仿	真属性 。设置	置>>仿 直设置 菜单道	场也可用于	指定所有工程和	口电路板组件	的有限元仿
真應性。						
		数据源:	生成	~		
	伤具腐住	which do BI Me We	2			
		TUSTACAS	1			
		阻尼因子:	-0.05			
		最小頻率:	10		HZ ~	
		最大频率:	2000		HZ \sim	
		温度:			c ~	
	油土把計畫	時時				
	14-02 W61413E	路段1: 🚺 油丰肥	ah			
		// L // L // L // L	*1			
PCB建格	±	122 142 -102 103				
器件建模	ŧ	四位天尘	5 晋开的	~		
安装点建	模	区域建模	۲	~		
钻孔建想	ŧ.	PCB材料和单元	Uniform	~		
引脚建构	٤.	PCB最多材料	: 100			
轨迹建模	ž.	单元阶次	: 二阶	~		
键合丝建	模	最小边长度	: 1	mm 🖌		
散热器整	模	P				
灌封区域	模	取人四倍大小	¢ 2	mm ~		
机械零件刻	観	垂直网格大小	c 1	mm ~		
		最小网格角度	: 15	~		
		最小四边形质量	: 0.4	~		
						J

图 4-2 编辑冲击振动

4.1.2. 仿真结果

冲击振动的仿真结果包括摘要、寿命预测、冲击、位移云图和应变云图。摘

要有冲击振动的最大位移、最大应变、仿真运行时间和建模的一些信息,详细如 图 4-3 所示。

中击振动		PCB属性		安装点属性	
最大位移阶段:	阶段1	网格类型:	合并的	安装点:	是
最大位移载荷:	冲击振动	PCB建模:	Uniform	单元阶次:	二阶
最大位移时间:	4.1 章秒	PCB材料数:	100	最大网格大小:	2 mm
最大位移;	1.7e-1 mm	建模区域:	否	垂直网格:	1 mm
最大应变:	2.7e-3	单元阶次:	二阶	钻孔属性	
温度:	N/A	最小边长度;	1 mm	钻孔建模:	是
版的属性		最大网格大小:	2 mm	最小孔径:	1 mm
节点数:	2,722	垂直网格大小:	1 mm	最大边长:	1 mm
单元数:	3,664	最小网格角度:	15°	器件属性	
器件数:	59	最小四边形质量:	0.40	器件建模:	是
安装点数:	4	四边形比重:	0.000	单元阶次:	二阶
孔的数量:	134	轨道属性		最小器件大小:	1 mm
有限元分析		轨道建模:	N/A	最大网格大小:	2 mm
模型来源:	生成	单元阶次:	N/A	垂直网格:	1 mm
仿真求解器:	Calculix	最大网格大小:	N/A	引脚属性	
使用CPU核:	6	最大孔数:	N/A	引脚建模:	N/A
网格划分时间:	4.3s	散热器属性		单元阶次:	N/A
仿真时间:	19.7m	散热器:	N/A	最大网格大小:	N/A
处理时间:	52.9s	单元阶次:	N/A	垂直网格:	N/A
总时间:	20.7m	最大网格大小:	N/A	键合丝属性	
		垂直网格:	N/A	键合丝:	N/A
		灌注属性		单元阶次:	N/A
		灌封区域:	N/A	最长线段:	N/A
		单元阶次:	N/A	机械零件属性	
		最大网格大小:	N/A	机械零件:	N/A
		垂直网格;	N/A	单元阶次:	N/A
				最大网格大小:	N/A
				垂直网格:	N/A

图 4-3 冲击振动仿真摘要

"振动"页签是每个器件的仿真结果,包括最大位移、最大应力、器件是否 开裂、TTF、不可靠度和安全等级,如图 4-4 所示。

器件ID	封装	器件类型	面	最大位移	最大应变	器件开裂	TTF (年) ^	不可靠度	不可靠度	等级
U2	BGA-144	集成电路	正面	1.7E-1	2.2E-3	N	13.1	53.4	7.3E0	0.0
J1	MINIUSB-AB-SM	连接器(JACK)	正面	1.3E-1	1.5E-3	N	>100	1.6	1.6E-1	10.0
J4	DIP2X30_2P54	连接器(JACK)	背面	1.1E-1	5.9E-4	N	>100	1.3	1.3E-1	10.0
J5	DIP2X30_2P54	连接器(JACK)	背面	1.1E-1	5.0E-4	N	>100	0.5	4.6E-2	10.0
U1	SOT-223 (TO-261	集成电路	正面	1.5E-1	1.0E-3	N	>100	0.1	9.0E-3	10.0
J2	DIP2X7_2P54	连接器(JACK)	正面	1.2E-1	7.5E-4	N	>100	0.0	4.4E-3	10.0
U3	SOT-223 (TO-261	集成电路	正面	1.4E-1	6.9E-4	N	>100	0.0	5.4E-4	10.0
C6	C0402	电容器	正面	1.6E-1	1.7E-3	N	>100	0.0	5.5E-5	10.0
C7	C0402	电容器	正面	1.6E-1	1.5E-3	N	>100	0.0	2.2E-5	10.0
R1	R0402	电阻	正面	7.4E-2	9.1E-5	N	>100	0.0	1.1E-14	10.0
R2	R0402	电阻	正面	1.7E-1	2.0E-4	N	>100	0.0	4.4E-12	10.0
R3	R0402	电阻	正面	1.7E-1	1.5E-4	N	>100	0.0	3.3E-13	10.0
C11	C0402	电容器	正面	1.7E-1	5.1E-5	N	>100	0.0	0.0E0	10.0
R4	R0402	电阻	正面	1.7E-1	8.6E-5	N	>100	0.0	0.0E0	10.0
C10	C0805	电容器	正面	1.6E-1	2.3E-4	N	>100	0.0	2.4E-10	10.0
R5	R0402	电阻	正面	1.7E-1	3.5E-4	N	>100	0.0	3.1E-10	10.0
C13	C0402	电容器	正面	1.7E-1	1.0E-4	N	>100	0.0	2.2E-14	10.0
R6	R0402	电阻	正面	1.6E-1	2.6E-4	N	>100	0.0	3.0E-11	10.0
C12	C0402	电容器	正面	1.7E-1	1.0E-4	N	>100	0.0	2.2E-14	10.0
R7	R0402	电阻	正面	1.5E-1	1.1E-4	N	>100	0.0	4.4E-14	10.0
C15	C0402	电容器	正面	1.6E-1	1.2E-4	N	>100	0.0	6.7E-14	10.0
R8	R0402	电阻	正面	1.6E-1	2.5E-4	N	>100	0.0	2.0E-11	10.0
C14	C0402	电容器	正面	1.7E-1	5.4E-5	N	>100	0.0	0.0E0	10.0
R9	R0402	电阻	正面	1.7E-1	2.2E-4	N	>100	0.0	7.8E-12	10.0
C17	C0402	电容器	正面	1.7E-1	5.0E-5	N	>100	0.0	0.0E0	10.0
C16	C0402	电容器	正面	1.7E-1	5.0E-5	N	>100	0.0	0.0E0	10.0
13	JP_2P54	连接器(JACK)	正面	1.6E-1	3.7E-4	N	>100	0.0	9.0E-8	10.0
C19	C0805	电容器	正面	1.5E-1	7.1E-4	N	>100	0.0	1.3E-6	10.0
C18	C0805	电容器	正面	1.5E-1	7.3E-4	N	>100	0.0	1.8E-6	10.0
S1	SMD_3X4X2MM	开关	正面	3.5E-2	5.6E-4	N	>100	0.0	7.3E-6	10.0
C20	C0402	电容器	正面	1.7E-1	6.9E-5	N	>100	0.0	0.0E0	10.0
C22	C0805	电容器	正面	1.2E-1	3.2E-4	N	>100	0.0	2.4E-9	10.0
C21	C0402	电容器	正面	1.2E-1	1.9E-4	N	>100	0.0	2.5E-12	10.0
C24	C0805	电容器	正面	6.9E-2	1.1E-4	N	>100	0.0	8.3E-13	10.0
C23	C0805	电容器	正面	6.1E-2	1.4E-4	N	>100	0.0	3.9E-12	10.0
C26	C0402	电容器	正面	1.5E-1	4.2E-4	N	>100	0.0	1.2E-9	10.0
C25	C0402	电容器	正面	1.5E-1	4.8E-4	N	>100	0.0	3.8E-9	10.0
C28	C0402_1_2	电容器	正面	1.5E-1	4.7E-4	N	>100	0.0	3.0E-9	10.0
C27	C0402	电容器	正面	1.5E-1	5.8E-4	N	>100	0.0	1.6E-8	10.0
C1	C0402	电容器	正面	1.5E-1	5.0E-4	N	>100	0.0	4.9E-9	10.0
C2	C0402	电容器	止面	1.5E-1	4.7E-4	N	>100	0.0	2.9E-9	10.0
C3	C0402	田家器	1 FIB	1 SE-1	47E-4	N S	>100	0.0	2 8F-9	10.0

图 4-4 冲击振动仿真结果表

图表左下角的矩形区域以图形方式显示了此项目的所需可靠性目标,其顶部 由所需的故障概率限制,而右侧则由所需的使用寿命限制。如果曲线停留在最高 线以下,直到使用寿命,则表明电路板可以达到其目标。在这种情况下,电路板 在生命周期中定义的机械冲击事件下将无法达到其可靠性目标,如图 4-5 所示。

图 4-5 冲击振动寿命预测

振动仿真运行后自动生成对应的位移和应变的仿真云图,如图 4-6 所示

- 4.2. 模态分析
- 4.2.1. 运行模态分析

右键点击"模态",系统弹出选择框,如图 4-7 所示。

图 4-7 选择模态分析

在选择框中选择"运行分析任务",系统弹出模态分析属性框。仿真属性中 有固有频率结果数、最小频率、最大频率和温度属性。"固有频率结果数"自动 生成几阶的云图的数量。设置"最小频率"和"最大频率"软件会自动在这个频 率内算出固有频率。如图 4-8 所示。

	数据源:	主成	~	
仿真属性				
固有频率	结果数: 6	~		
最	小頻率: 10 HZ	~		
殿	大頻率: 6000 HZ	~		
	38.18+ C			
	-			
温度属性 温度	载荷			
	to the for the			
1	篇度10 共 。 曾	~		
1	参考温度: 20.0	c ~		
	Marian.			
	L.J mt.			
	10) án.			
	səj im.			
	-J m.			
PCB建模	阿福.	合并的	~	
PCB建模 器件建模	JJan. 网格类型: 区域建模:	合并的	>	
PCB建模 器件建模 空影伝達模	·//ma. 网格类型: 区域建模: PCB材料和单元	合并的 否 Uniform	> > >	
PCB建模 器件建模 安装示型模 钻孔建模 日期配数模	PCB 和 PCB 和 中 元 PCB 表 名 初 都 。	合并的 否 Uniform	× × ×	
PCB建模 各對件建模 安美示定建模 站孔建模 动力建模 动力建模	>5/max 网格类型: 区域建株: PCB材料和单元: PCB最多材料:	合并的 否 Uniform 100	> >	
PCB建模 号4件建模 安純-示型模 站孔逻辑模 目期逻辑模 1、加速模 後全公連模		会并的 否 Uniform 100 二阶	K × K	
PCB建模 号44建模 安装示器推模 钻孔逻辑模 引脚逻辑模 键合15型模 键合15型模		合并的 师 Uniform 100 二阶 1	> > > mm >	
PCB建模 器件接接 安朝示规建模 品孔建模 引脚进程 镜台达建模 微於永衡建模 准劲区域发展模		合并的 否 Uniform 100 二 段 1	× × × × × mm ×	
PCB建模 용44建模 安美示理模 钻孔建模 引脚運模 轨边重模 钱全公差示理模 轨边重模 城北市新建模 「加加工具」 東京市 「加加工具」 東京市 「加加工具」 「加工具」 「加工具」		合并的 否 Uniform 100 二阶 1 2 1	x x x x x x x x x x x x x x x x x x x	
PCB邊機 용44建模 安純示量模 钻孔產模 引脚產模 钻上放置模 地位重接 地位重接 地位重接 市地市都重換 潮封区域設置模 和城寨44建模	>>Jaa. 回格类型: 区域建株: PCB材料和单元: PCB最多材料: 单元阶次: 最小边长度: 最大回格大尔: 垂直网络大尔: 量有小路方尔: 量有小路方尔:	合并的 函 Uniform 100 二阶 1 2 1 15	x x x x x x x x x x x x x x x x x x x	
PCB邊機 器件建模 安美示整機 钻孔產機 引脚產機 助改重機 使全丝建模 取热感數建模 潮起ICJ域整模 机械零件建模	>>Jaa. 回格类型: 区域建株: PCB材料和单元: PCB最多材料: 单元阶次: 最小边长度: 最大网格大尔: 垂直网格大尔: 最小四边形质里: 最小四边形质里:	合并的 西 Uniform 100 二阶 1 2 1 1 5 0.4	v v v v v v v v v v v v v v v v v v v	

图 4-8 编辑模态分析

4.2.2. 仿真结果

模态的仿真结果包括摘要、各阶位移云图和固有频率列表。摘要有模态仿真 运行时间和建模的一些信息,详细如图 **4-9** 所示。

固有频率属性		PCB属性		安装点属性	
固有频率结果数:	6	网格类型:	合并的	安装点:	是
最小频率:	10	PCB建模:	Uniform	单元阶次:	二阶
最大频率:	6000	PCB材料数:	100	最大网格大小:	2 mm
温度:	N/A	建模区域:	否	垂直网格:	1 mm
板的属性		单元阶次:	二阶	钻孔属性	
节点数:	2,724	最小边长度:	1 mm	钻孔建模:	是
单元数:	3,681	最大网格大小:	2 mm	最小孔径:	1 mm
器件数:	59	垂直网格大小:	1 mm	最大边长:	1 mm
安装点数:	4	最小网格角度:	15°	器件属性	
孔的数量:	134	最小四边形质量:	0.40	器件建模:	是
有限元分析		四边形比重:	0.000	单元阶次:	二阶
模型来源:	生成	轨道属性		最小器件大小:	1 mm
仿真求解器:	Calculix	轨道建模:	N/A	最大网格大小:	2 mm
使用CPU核:	6	单元阶次:	N/A	垂直网格:	1 mm
网格划分时间:	4.3s	最大网格大小:	N/A	引脚属性	
仿真时间:	47.3m	最大孔数:	N/A	引脚建模:	N/A
处理时间:	19.5s	散热器属性		单元阶次:	N/A
总时间:	47.7m	散热器:	N/A	最大网格大小:	N/A
		单元阶次:	N/A	垂直网格:	N/A
		最大网格大小:	N/A	键合丝属性	
		垂直网格:	N/A	键合丝:	N/A
		灌注属性		单元阶次:	N/A
		灌封区域:	N/A	最长线段:	N/A
		单元阶次:	N/A	机械零件属性	
		最大网格大小:	N/A	机械零件:	N/A
		垂直网格:	N/A	单元阶次:	N/A
				最大网格大小:	N/A
				垂直网格:	N/A

图 4-9 模态仿真摘要

"模态"页签是从最低频率到最高频率的每一个阶的固有频率,如图 4-10 所示。

寿命预计	阶数 へ	频率(Hz)
描去	1	610.64
保恋	2	728.17
器件校验	3	847.07
	4	991.48
	5	1,086.10
	6	1,347.41
	7	1,421.22

图 4-10 模态仿真结果表

```
模态仿真在 Calculix 和 Ansys 之间对比
```


图 4-11 电路板网格

一块有 59 个元器件的电路板,大小是 79*49mm。 具体的网格参数

对象	网格参数
PCB 建模	网格类型: 合并的
	单元阶次:二阶
	最小边长度: 2mm
	最大网格大小: 3mm
	垂直网格大小: 2mm
	最小网格角度: 15
	最小四边形质量: 0.4
器件建模	单元阶次: 二阶
	最小器件大小: 2mm
	最大网络大小: 3mm
	垂直网络大小: 1mm
安装点建模	单元阶次: 二阶
	最大网格大小: 2mm
	垂直网格大小: 1mm

仿真参数

最小频率: 10HZ,最大频率: 2000HZ,固有频率结果次数: 6 ➤ 仿真结果 Calculix 模态仿真结果

寿命预计	阶数 へ	频率(Hz)
描去	1	610.64
1実心	2	728.17
器件校验	3	847.07
	4	991.48
	5	1,086.10
	6	1,347.41
	7	1,421.22

图 4-12 Calculix 模态结果

ANSYS 模态仿真结果

命 预计	い	频率(Hz)
描本	1	597.08
1美心	2	724.37
件校验	3	835.70
	4	990.17
	5	1,074.00
	6	1,331.70
	7	1,422.40

图 4-13 ANSYS 模态结果

▶ 仿真云图

图 4-14 一阶模态云图

LWSIM

<u>FH참 3mm, 监件 2mm, 孔 1mm</u> 1,086.19 Hz Range [1.6e-1, 1.8e+3] mm 图 4-18 五阶模态云图 Min

Max

<u>፼路3mm, ≝ff 2mm, 孔 1mm</u> 1,347.41 Hz Range [9.5e-1, 1.1e+3] mm 图 4-19 六阶模态云图

Min

Max

PHB 3mm, ##f 2mm, 孔 1mm ₱35.70 Hz Range [6.0e-1, 7.7e+2] mm 图 4-22 三阶模态云图

LWSIM

^{፼88} 3mm, ≝ff 2mm, 孔 1mm<mark>/ 1.074.00 Hz Range [1.3e-1, 1.9e+3] mm</mark> 图 4-24 五阶模态云图

LWSIM

- 4.3. 正弦振动分析
- 4.3.1. 运行正弦振动
 - 右键点击"正弦振动",系统弹出选择框,如图 4-26 所示。

图 4-26 选择正弦振动

在选择框中选择"运行分析任务",系统弹出正弦振动分析属性框。仿真属 性中有正弦结果次数、阻尼因子、最小频率、最大频率和温度属性。"正弦结果 次数"属性设置生成正弦振动结果云图层的数量。"阻尼因子"属性设置电路板 卡组合的阻尼,可防止仿真过程中出现震荡,默认值为 0.2。设置"最小频率" 和"最大频率"软件会自动在这个频率内算出固有频率。如图 4-27 所示。

明 正弦振动分析属性					×		
指定所需的仿真属性。 设置>>(真属性。	方真设置菜单选环	页也可用于打	皆定所有工具	程和电路板组件的有限元仿			
	数据源: 生	E成	~				
仿真属性					7		
简谐结果次数:	1		~				
*阻尼修改因子:	改因子: 0.2						
*最小频率:	10		HZ v				
*最大频率:	2000		HZ 🗸				
温度:			c ~				
正弦振动载荷 阶段1: 🗹 正弦振	动						
PCB建模	网格类型:	合并的	~				
器件建模	区域建模:	否	Y	-			
	B材料和单元:	Layered	~				
引脚建模	PCB最多材料:	100		1			
轨迹建模	单元阶次:		-Bt				
键合丝建模	*最小油长度	0.5	mm v]			
散热器建模	县土网教士小:	15	mm 🗸				
福封区域建模	取入P318入小·	0					
	亚且PYI的人小: 最小网络各座:	15					
	山口沿口的月月之	10	Y				
	小四辺形质里:	0.4	Y		J		
保存并运行	保存	重置	取消	帮助			
		101					

图 4-27 编辑正弦振动

4.3.2. 仿真结果

正弦振动的仿真结果包括摘要、寿命预测、正弦振动结果表、位移云图和应 变云图。摘要有正弦振动的最大位移、最大应变、仿真运行时间和建模的一些信 息,详细如图 4-28 所示。

简谐振动		PCB属性		安装点属性		
最大位移阶段:	阶段1	网格类型:	合并的	安装点:	是	
最大位移载荷:	简谐振动	PCB建模:	Uniform	单元阶次:	二阶	
最大位移频率:	437.17 Hz	PCB材料数:	100	最大网格大小:	2 mm	
最大位移:	8.5e-2 mm	建模区域:	否	垂直网格:	1 mm	
最大应变:	8.8e-4	单元阶次:	二阶	钻孔属性		
板的属性		最小边长度:	1 mm	钻孔建模:	是	
节点数:	2,722	最大网格大小:	2 mm	最小孔径:	1 mm	
单元数:	3,669	垂直网格大小:	1 mm	最大边长:	1 mm	
器件数:	59	最小网格角度:	15°	器件属性		
安装点数:	4	最小四边形质量:	0.40	器件建模:	是	
孔的数量:	134	四边形比重:	0.000	单元阶次:	二阶	
有限元分析		轨道属性		最小器件大小:	1 mm	
模型来源:	生成	轨道建模:	N/A	最大网格大小:	2 mm	
仿真求解器:	Calculix	单元阶次:	N/A	垂直网格:	1 mm	
使用CPU核:	6	最大网格大小:	N/A	引脚属性		
网格划分时间:	4.6s	最大孔数:	N/A	引牌建模:	N/A	
仿真时间:	1.6m	散热器属性		单元阶次:	N/A	
处理时间:	27.4s	散热器:	N/A	最大网格大小:	N/A	
总时间:	2.1m	单元阶次:	N/A	垂直网格:	N/A	
		最大网格大小: N/A		键合丝属性		
		垂直网格:	N/A	键合丝:	N/A	
		灌注属性		单元阶次:	N/A	
		灌封区域:	N/A	最长线段:	N/A	
		单元阶次:	N/A	机械零件属性		
		最大网格大小:	N/A	机械零件:	N/A	
		垂直网格:	N/A	单元阶次:	N/A	
				最大网格大小:	N/A	
				垂直网格:	N/A	

图 4-28 正弦振动仿真摘要

"正弦振动"页签是每个器件的仿真结果,包括最大位移、最大应力、TTF、 不可靠度和安全等级,如图 4-29 所示。

器件ID	封装	器件类型	Ť	焊料	最大位移	最大应变	损伤	TTF (年) ^	不可靠度	等级
U2	BGA-144	集成电路	正面	SAC305	8.4E-2	1.2E-3	1.1E8	0.0	100.0	0.0
J4	DIP2X30_2P54	连接器(JACK)	背面	SAC305	5.1E-2	2.3E-4	3.5E1	0.3	100.0	0.0
J5	DIP2X30_2P54	连接器(JACK)	背面	SAC305	5.3E-2	2.1E-4	1.9E1	0.5	100.0	0.0
11	MINIUSB-AB-SM	连接器(JACK)	正面	SAC305	4.5E-2	4.4E-4	6.9E0	1.4	100.0	0.0
U1	SOT-223 (TO-261	集成电路	正面	SAC305	5.6E-2	3.4E-4	5.7E-1	17.6	16.7	0.0
C6	C0402	电容器	正面	SAC305	8.1E-2	9.0E-4	1.2E-1	82.1	0.2	10.0
U3	SOT-223 (TO-261	集成电路	正面	SAC305	5.2E-2	2.6E-4	7.8E-2	>100	0.0	10.0
C7	C0402	电容器	正面	SAC305	8.0E-2	7.9E-4	4.8E-2	>100	0.0	10.0
J2	DIP2X7_2P54	连接器(JACK)	正面	SAC305	3.4E-2	2.0E-4	4.6E-2	>100	0.0	10.0
S1	SMD_3X4X2MM	开关	正面	SAC305	1.3E-2	2.0E-4	5.3E-4	>100	0.0	10.
C18	C0805	电容器	正面	SAC305	5.4E-2	3.0E-4	4.0E-4	>100	0.0	10.
U4	SOIC-8 (MS-012AA)	集成电路	正面	SAC305	4.5E-2	1.4E-4	3.3E-4	>100	0.0	10.0
R13	R0402	电阻	正面	SAC305	8.1E-2	4.0E-4	2.4E-4	>100	0.0	10.0
C19	C0805	电容器	正面	SAC305	5.7E-2	2.4E-4	9.0E-5	>100	0.0	10.0
C27	C0402	电容器	正面	SAC305	7.5E-2	3.4E-4	5.8E-5	>100	0.0	10.0
13	JP 2P54	连接器(JACK)	正面	SAC305	7.0E-2	1.5E-4	1.7E-5	>100	0.0	10.0
C28	C0402 1 2	电容器	正面	SAC305	7.6E-2	2.8E-4	1.6E-5	>100	0.0	10.
C1	C0402	电容器	正面	SAC305	7.4E-2	2.8E-4	1.3E-5	>100	0.0	10.
C25	C0402	电容器	TEGO	SAC305	7.6E-2	2.7E-4	1.1E-5	>100	0.0	10.
C3	C0402	电容器	正面	SAC305	7.4E-2	2.5E-4	6.5E-6	>100	0.0	10.
C2	C0402	电容器	正面	SAC305	7.4E-2	2.5E-4	5.6E-6	>100	0.0	10.
C4	C0402	电容器	正面	SAC305	7.4E-2	2.3E-4	2.7E-6	>100	0.0	10.
C26	C0402	电容器	正面	SAC305	7.6E-2	2.2E-4	2.2E-6	>100	0.0	10.
Y1	OSC3225	振荡器	正面	SAC305	8.0E-2	1.1E-4	2.0E-6	>100	0.0	10.
25	C0402 1	电容器	正面	SAC305	7.4E-2	2.1E-4	1.4E-6	>100	0.0	10.
R1	R0402	电阻	正面	SAC305	2.6E-2	2.5E-5	1.0E-6	>100	0.0	10.
32	R0402	申問	正面	SAC305	8.2E-2	1.2E-4	1.0E-6	>100	0.0	10.
R3	R0402	电阴	正面	SAC305	8.3E-2	8.7E-5	1.0E-6	>100	0.0	10.
011	C0402	电容器	正面	SAC305	8.2E-2	3.6E-5	1.0E-6	>100	0.0	10
R4	R0402	电阳	正面	SAC305	8.2E-2	6.7E-5	1.0E-6	>100	0.0	10.
C10	C0805	由富器	正面	SAC305	7.2E-2	1.0E-4	1.0E-6	>100	0.0	10
35	R0402	曲.88	正面	SAC305	7.8E-2	1.4E-4	1.0E-6	>100	0.0	10
C13	C0402	由意識	IEm	SAC305	84E-2	3.4E-5	1.0E-6	>100	0.0	10
36	R0402	由間	正面	SAC305	7.6E-2	1 1E-4	1.0E-6	>100	0.0	10
C12	C0402	由宗器	正面	SAC305	8 4F-2	2 0F-5	1.05-6	>100	0.0	10
R7	R0402	曲阳	正面	540305	7 1E-2	6.4E-5	1.0E-6	>100	0.0	10
C15	C0402	由宗器	1Em	SAC305	7.05-2	5.55-5	1.05-6	>100	0.0	10
R8	R0402	由間	正面	SAC305	7.9E-2	1.2E-4	1.0E-6	>100	0.0	10
14	C0402	由宗器	正面	SAC305	8 2E-2	3.6E-5	1.0E-6	>100	0.0	10
29	R0402	由阳	TETE	SAC305	8 3E-2	1.2E-4	1.0E-6	>100	0.0	10
17	C0402	由容器	正面	SAC305	8 2E-2	5.05.5	1.05-6	>100	0.0	10
C16	C0402	中京県	1E du	SAC305	8 25.2	2 05-5	1.05-6	>100	0.0	10.
C20	C0402	中的服	1Edo	CACODE	0.20-2	4 95 5	1.05.6	>100	0.0	10.
620	00402	中学的	IL GRU	CACODE	5.46-2	4.82-3	1.05-6	100	0.0	10.
C22	0000	中白田	TT OR	CACODE	5.75-2	0.05.5	1.05.6	>100	0.0	10.
CZI	0402	-C-2-53	II.au	SACSUS	5.5E-2	9.02-5	1.0E-0	>100	010	10.0

图 4-29 正弦振动仿真结果表

图表左下角的矩形区域以图形方式显示了此项目的所需可靠性目标,其顶部 由所需的故障概率限制,而右侧则由所需的使用寿命限制。如果曲线停留在最高 线以下,直到使用寿命,则表明电路板可以达到其目标。在这种情况下,电路板 在生命周期中定义的机械冲击事件下将无法达到其可靠性目标。如图 4-16 所示。

图 4-16 正弦振动寿命预测

振动仿真运行后自动生成对应的位移和应变的仿真云图,如图 4-17 所示

图 4-17 正弦振动仿真云图

Strain Range [1.2e-6, 8.8e-4]

- 4.4. 温度应力分析
- 4.4.1. 运行温度应力

右键点击"温度应力",系统弹出选择框,如图 4-18 所示。

图 4-18 选择温度应力分析

在选择框中选择"运行分析任务",系统弹温度应力分析属性框。仿真属性 中有温度属性和温度载荷。温度属性是按照温度升高均温进行仿真的。温度载荷 是设置是否使用器件温升和"温度载荷"自动从任务剖面中读取,可以选择要 进行仿真的载荷。如图 4-19 所示。

描述所需的仿真屈性。设置>>仿真设置荣单选项也可用于指定所有工程和电路恢复件的有限元仿真 属性. 温度载荷 健用器件温升: ▲ ● 防稅1: ▲ ● 加段1: ▲ ● 小稅1: ▲ ● 小稅1: ● 小尺倍建程 ● 修用器件温升: ● 小稅1: ● 小稅1: ● 小稅1: ● 小穀1: ● ● ● 小穀1: ● ● ●	1 温度应力属性	ŧ	×
應任. 温度乾荷 使用器件温升: ▲ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	指定所需的仿真属性。	设置>>仿真设置 菜单选项	他可用于指定所有工程和电路板组件的有限元仿真
 出度或考 	鴈住。		
温度鼓石 使用器件温升: ▲ 防銀1: ▲ 原約1: ▲ 上 ▲ 防銀1: ▲ 上 ▲ 方式 本 水 1 水 3 ア 5 PCB確構 ● 総合発生整 ● 解構体整整 ● 総合設整整備 ● N2 ● PCB確構 ● PCB構築 ● 総合設整機構 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● </th <th></th> <th>数据源: 生</th> <th>Ert 🖌</th>		数据源 : 生	Ert 🖌
温度载荷 使用器件温升: え ▲ ▲ ▲ ▲ ▲ ● ○ ▲ ● ● ○ ▲ ● ● ● ▲			
使用器件温升: 差 温度应力: 量低温和量素温 防段1: 温度工兄 仿真厘性 温度仿真结果数: 1 ·对流换热系数: ? 5 PCB建模 网格类型: 全井的 ·教·流换热系数: ? 5 PCB建模 网格类型: 全井的 ·教·流换热系数: ? 5 PCB建模 区域建模: ※ ·教化建模 区域建模: ※ ·教的影響/ PCB根料和单元: Layered ·教力路影響/ 小口/ ·教小路影響/ 0 mm ·教小路影響/ 0 mm ·教小的长度: 0.5 mm ·教小的影響/ 0 mm <	温度载荷		
 勝段1: 協良 抗臭 结果数: 1 ・	使用器件温升:	是 ~	温度应力: 最低温和最高温 ~
仿真歴性 温度仿真结果数: 1 *对流换热系数: ? *对流换热系数: ? * ? PCB建模 왕什建模 安装:< 站上速模 ·	阶段1:	☑ 温度工况	
仿真嘿性 温度仿真结果数: *对流热热系数: *对流热热系数: ? PCB速模 *科特建模 安装点强建模 *科技建模 ·B脚建模 ·ADOS建模 ·BM建模 ·BM建模 ·BM建模 ·BM建模 ·BM建模 ·BM建模 ·BM建模 ·BM是 ·BMP建模 ·BMP建模 ·BMP建模 ·BMP建模 ·BMP建模 ·BMP建模 ·BA/DAK度: ·B···································			
仿真屈性 温度仿真结果数: 功流换热系数: 功流换热系数: 7 对流换热系数: 7 PCB建模 路44建模 安装点感塑模 站孔建模 引脚建模 协力送整模 砂丸运验模 砂丸运验模 耐水点容整模 耐水点容整模 砂水运器模 砂水运路模 砂水运路模 砂水运路模 砂水运路模 砂水运路模 砂水运路模 砂水运路 ● 小应路 小应路 小应路 小应路 ● ● ● ● ● ● ● ● ● ● ●			
仿真屬性 温度仿真结果熱: 1 "对流换热系数: ? "对流换热系数: ? PCB建模 网格类型: 全并約 路付建模 这些模模 说加速模 说加速模 说加速模 说加速模 增力必要複 增力必要複 增力必要複 增力必要複 增力必要複 增力必要複 增力必要複 增力必要複 增力必要相 增力必要相 增力必要相 增力必要相 增力必要相 增力必要相 最小四指大力有量 <			
仿真雇性 温度仿真结果数: 1 *对流换热系数: 2 *对流换热系数: 2 PCB建模 网格类型: 發行建模 受寒点短建模 站孔建模 引脚建模 站江建模 引脚建模 放达望模 PCB材料和单元: Layered 中口的长度: 0.5 ·最小边长度: 0.5 ·最大网格大小: 1.5 ·最小网格角度: 1.5 最小四边形质量: 0.4			
店店店具结果数: 1 *对流换热系数: ? *对流换热系数: ? PCB建模 网格类型: ************************************			
過度仿真结果款: 1 *对流换热系数: ? *对流换热系数: ? PCB建模 网格类型: 登卷: 分離 容卷: ////////////////////////////////////			
アCB建模 アCB建模 PCB建模 网格类型: 全并約 器件建模 区域建模: 答 安装点短推模 ALALE 站加速模 PCB材料和单元: Layered 站加速模 PCB最多材料: 100 轨边速建模 登点公建模 散热器整模 一阶、 酸大路整模 ●最小边长度: 0.5 成大网格大小: 1.5 mm 最大网格大小: 0 mm 最小四掐形质量: 0.4 ●	10 具腐住	结果教: 1	~
PCB建模 网格类型: 全并約 용44建模 区域建模: 图 安寒点强建模 区域建模: 图 站孔建模 BJM建模 站边建模 PCB最多材料: 100 敏力必能模 単元防次: 一阶 增力达长度: 0.5 mm 常数丸器發建模 *最小边长度: 0.5 mm 和城零44建模 ● ● 最小四边形质里: 0.4 ● ●	*=+:&+&:	h.を新·2 5	
PCB建模 网格类型: 全并的 器件建模 区域建模: 答 安装点建模 Exit Layered 钻孔建模 PCB材料和单元: Layered 引脚建模 PCB最多材料: 100 轨边建模 单元阶次: 一阶 健台丝建模 *最小边长度: 0.5 形成器模模 *最小边长度: 0.5 小械零件發建模 *最大网格大小: 1.5 小板零件發建模 *垂 直网格大小: 0 服小四边形质量: 0.4 ●	KS-motes		
器件建模 安装点建模 钻孔建模 名別脚建模 引脚建模 引脚建模 轨迹建模 壁合丝建模 散热器器建模 激素器 電力以大度: 0.5 小板零件建模 砂板 電力的名大虎: 0.5 小板零件建模 砂板 市田 最小四治形质量: 0.4	PCB建模	网格类型:	合并的
安装点建模 Example in the initial initinitial initial initial initial initi	器件建模	区域建模:	
钻孔建模 FCCH144和年九. Layetta 引脚建模 PCB最多材料: 100 轨迹建模 单元阶次: 一阶 键台丝建模 *最小边长度: 0.5 mm 散热器整模 *最小边长度: 0.5 mm 灌封区域建模 *最大网格大小: 1.5 mm 和械零件建模 *垂直网格大小: 0 mm 最小四边形质里: 0.4	安装点建模	DCB4481400	Lavered
51 開催復 PCB販多利料: 100 轨迹建模 単元防次: 一阶 键台丝建模 *最小边长度: 0.5 mm 散热器建模 *最大网格大小: 1.5 mm 灌封区/版建模 *最大网格大小: 0 mm 机械零件建模 *垂 直网格大小: 0 mm 最小网格角度: 15	钻孔建模		Layered
秋心空星候 単元防次: 一阶 健台丝建模 *最小边长度: 0.5 mm *最小辺长度: 0.5 mm *最小辺长度: 0.5 mm *最大网格大小: 1.5 mm *最大网格大小: 1.5 mm #封区城建模 *最大网格大小: 0 mm 和械零件建模 *母直网格大小: 0 mm 最小四边形质量: 0.4 #四世	らり脚建模	PCB鲸多材料:	100
飲热器發建模 散热器發建模 灌封区 - 板建模 和航季件建模 机械零件建模 和動局度: 和動局度: 和」 和動的路路建模 和動的路路上模 和動局度: 日の格大小: 和動局度: 日の10000000000000000000000000	物心理模	单元阶次:	
灌封区域建模 *最大网格大小: 1.5 mm ~ 机械零件建模 *垂直网格大小: 0 mm ~ 最小网格角度: 15 ~ 最小四边形质里: 0.4 ~	散熱器建模	*最小边长度:	0.5 mm ~
机械零件建模 *垂直网格大小: 0 mm → 最小网格角度: 15 → 最小四边形质里: 0.4 →	灌封区域建模	*最大网格大小:	1.5 mm ~
最小网格角度: 15 最小四边形质里: 0.4 四海共行行 保存 電響 取当 基明	机械零件建模	*垂直网格大小:	0 mm ~
最小四边形质里: 0.4	2.578	最小网格角度:	15 🗸
		最小四边形质里:	0.4 🗸
保友并法行 保友 雷罟 取当 邦助			
	保存并述	运行 保存	重置 取消 帮助

图 4-19 编辑温度应力分析

4.4.2. 仿真结果

温度应力的仿真结果包括摘要、寿命预测、随机振动结果表、位移云图和应 变云图。摘要有随机振动的最大位移、最大应变、最高最低温、仿真运行时间和 建模的一些信息,详细如图 4-20 所示。

温度曲线		PCB属性		安装点属性	
参考温度:	20.0C	网格类型:	合并的	安装点:	是
升高的温度:	5C	PCB建模:	Uniform	单元阶次:	一阶
最大应变相:	阶段1	PCB材料数:	100	最大网格大小:	2 mm
最大应变载荷:	温度工况 MIN	建模区域:	否	垂直网格:	2 mm
最大绝对位移:	6.4e-1 mm	单元阶次:	—阶	钻孔属性	
最大绝对应变:	8.0e-3	最小边长度:	1 mm	钻孔建模:	是
最高温度:	70.0	最大网格大小:	2.0 mm	最小孔径:	1.0 mm
最低温度:	-26.0	垂直网格大小:	2 mm	最大边长:	1.0 mm
板的属性		最小网格角度:	5°	器件属性	
节点数:	3,170	最小四边形质量:	0.70	器件建模:	是
单元数:	4,539	四边形比重:	0.000	单元阶次:	一阶
器件数:	18	轨道属性		最小器件大小:	2 mm
安装点数:	4	轨道建模:	N/A	最大网格大小:	2 mm
孔的数量:	134	单元阶次:	N/A	垂直网格:	2 mm
有限元分析		最大网格大小:	N/A	引脚属性	
模型来源:	生成	最大孔数:	N/A	引脚建模:	是
仿真求解器:	Calculix	散热器属性		单元阶次:	一阶
使用CPU核:	8	散热器:	是	最大网格大小:	1.0 mm
网格划分时间:	8.9s	单元阶次:	—阶	垂直网格:	1.0 mm
仿真时间:	25.ls	最大网格大小:	0.5 mm	键合丝属性	
处理时间:	9.1s	垂直网格:	0.5 mm	键合丝:	是
总时间:	43.2s	灌注属性		单元阶次:	一阶
		灌封区域:	N/A	最长线段:	0.5 mm

图 4-20 温度应力仿真摘要

"温度应力"页签是每个器件的仿真结果,包括最大位移、最大应力、TTF、 不可靠度和安全等级,如图 4-21 所示。

器件ID	載荷	器件温度(°C)	所在区域温度(°C)	位移(mm)	应变(MPa)	应变XY(MPa)	应变Z(MPa)	应力XY(N)	应力Z(N)
R1	温度工况 MAX	66.5	66.9	2.3804E-2	4.8768E-4	4.7244E-4	-1.1979E-4	2.2418E1	-1.4210E-1
R2	温度工况 MAX	69.7	70.0	4.9287E-2	4.1438E-4	4.0675E-4	-7.9137E-5	1.7418E1	4.0235E-2
R3	温度工况 MAX	69.8	70.0	4.8554E-2	4.1107E-4	4.0318E-4	-8.0107E-5	1.7319E1	4.5018E-2
C11	温度工况 MAX	68.7	68.9	4.1961E-2	3.8500E-4	3.7725E-4	-7.6670E-5	1.6457E1	2.1659E-2
N度劳 R4	温度工况 MAX	69.0	69.2	3.8416E-2	4.7270E-4	4.6255E-4	-9.7340E-5	1.9916E1	-2.9316E-1
C10	温度工况 MAX	69.0	69.1	2.9054E-2	3.6937E-4	3.5907E-4	-7.9255E-5	1.6993E1	8.2746E-2
R5	温度工况 MAX	68.5	68.8	3.3456E-2	3.6452E-4	3.5469E-4	-8.3958E-5	1.6739E1	1.1340E-1
C13	温度工况 MAX	69.5	69.8	4.3037E-2	4.2448E-4	4.1608E-4	-8.4042E-5	1.8153E1	-8.1109E-3
R6	温度工况 MAX	68.2	68.6	3.2422E-2	3.4997E-4	3.4011E-4	-8.2450E-5	1.5914E1	-1.6447E-2
C12	温度工况 MAX	69.7	69.8	4.4665E-2	4.3221E-4	4.2448E-4	-8.1393E-5	1.8340E1	6.6389E-2
R7	温度工况 MAX	68.2	68.5	3.4021E-2	3.8686E-4	3.7706E-4	-8.6552E-5	1.7309E1	1.0672E-2
C15	温度工况 MAX	68.7	68.7	2.6078E-2	1.8714E-4	1.8613E-4	-1.5078E-5	1.6047E1	3.4726E0
R8	温度工况 MAX	68.8	69.0	4.4069E-2	3.9501E-4	3.8614E-4	-8.3254E-5	1.7320E1	2.5296E-2
C14	温度工况 MAX	68.2	68.9	3.9482E-2	3.7165E-4	3.6334E-4	-7.8171E-5	1.6299E1	3.0780E-2
J1	温度工况 MAX	69.2	69.2	3.3816E-2	2.3635E-4	2.3394E-4	-2.9792E-5	1.3187E1	2.5277E0
R9	温度工况 MAX	69.0	70.0	4.8101E-2	4.1352E-4	4.0558E-4	-8.0643E-5	1.7584E1	1.2100E-2
C17	温度工况 MAX	67.9	68.6	4.0621E-2	3.8170E-4	3.7358E-4	-7.8299E-5	1.6590E1	2.6953E-2
J2	温度工况 MAX	63.9	64.3	3.1080E-2	4.3506E-4	4.3375E-4	-2.6204E-5	1.7661E1	1.3564E0
C16	温度工况 MAX	67.9	68.6	3.9408E-2	3.7918E-4	3.7087E-4	-7.8965E-5	1.6549E1	2.0042E-2
13	温度工况 MAX	67.9	68.2	2.9742E-2	2.6545E-4	2.6012E-4	-4.3938E-5	1.2346E1	1.6197E0
C19	温度工况 MAX	67.0	68.2	1.7933E-2	5.0625E-4	4.9749E-4	-8.7383E-5	2.0715E1	-1.6895E-2
J4	温度工况 MAX	69.2	69.2	1.0159E-1	6.0622E-3	5.9957E-3	1.6836E-4	2.4758E2	7.6179E1
C18	温度工况 MAX	66.6	68.6	3.2657E-2	5.4974E-4	5.4296E-4	-7.2758E-5	2.2118E1	3.5722E-2
J5	温度工况 MAX	67.6	67.6	1.0202E-1	6.5677E-3	6.4768E-3	2.9577E-4	2.5633E2	8.0739E1
S1	温度工况 MAX	65.9	66.3	2.4987E-2	8.0522E-4	7.8748E-4	-1.5786E-4	3.5840E1	1.0325E0
C20	温度工况 MAX	69.5	69.7	4.4865E-2	4.2059E-4	4.1287E-4	-8.0245E-5	1.7828E1	1.7791E-2
C22	温度工况 MAX	67.5	67.8	3.3460E-2	4.1144E-4	4.0212E-4	-8.3269E-5	1.9057E1	4.7911E-1
C21	温度工况 MAX	64.0	64.0	3.8279E-2	4.5724E-4	4.4681E-4	-9.7086E-5	2.0268E1	1.0370E-1
C24	温度工况 MAX	65.8	66.1	2.0292E-2	5.4171E-4	5.3006E-4	-1.0255E-4	2.3680E1	2.7896E-1
C23	温度工况 MAX	65.1	65.5	2.7852E-2	6.7943E-4	6.7073E-4	-9.2062E-5	2.7559E1	3.4559E-1
C26	温度工况 MAX	68.4	69.4	7.5538E-2	4.2309E-4	4.1874E-4	-6.0528E-5	1.6613E1	-1.7236E-2
C25	温度工况 MAX	68.4	69.4	7.5538E-2	4.2309E-4	4.1874E-4	-6.0528E-5	1.6613E1	-1.7236E-2
C28	温度工况 MAX	68.7	68.8	7.3626E-2	4.2378E-4	4.1941E-4	-6.0642E-5	1.6737E1	4.0645E-2
C27	温度工况 MAX	68.0	68.6	7.1545E-2	4.3485E-4	4.3026E-4	-6.3020E-5	1.7239E1	5.5875E-2
C1	温度工况 MAX	69.5	69.7	7.1610E-2	4.1901E-4	4.1407E-4	-6.4049E-5	1.6687E1	-1,4641E-2
C2	温度工况 MAX	69.4	69.6	7.6374E-2	4.0068E-4	3.9614E-4	-6.0146E-5	1.6119E1	1.1833E-1
C3	担度工况 MAX	69.4	69.6	7 5541E-2	4 1885E-4	4 1447E-4	-6.0449E-5	1.6487E1	3.6638E-2

图 4-21 仿真结果表

温度应力仿真运行后自动生成对应的位移、应变、应力和温度的仿真云图, 如图 4-22 所示

图 4-22 温度应力仿真云图

4.5. 随机振动分析

4.5.1. 运行随机振动

右键点击"随机振动",系统弹出选择框,如图 4-23 所示。

图 4-23 选择随机振动分析

在选择框中选择"运行分析任务",系统弹出随机振动分析属性框。仿真属 性中有阻尼因子、最小频率、最大频率和温度属性。"阻尼因子"属性设置电路 板卡组合的阻尼,可防止仿真过程中出现震荡,默认值为 0.2。设置"最小频率" 和"最大频率"软件会自动在这个频率内算出固有频率。如图 4-24 所示。

西 随机振动分析属性	×
指定所需的仿真属性。设置>>仿真设置菜单选项也可用于指定所有工程和电路板组件的有限元(真属性。	Ġ
数据源: 生成 🗸	
仿真属性	
阻尼因子: 0.2	
最小频率: 10 HZ ~	
最大頻率: 2000 HZ ~	
温度:	
随机振动载荷	
阶段1: 🗹 随机振动	
PCB建模 安装点建模: 是 V	
お 中 建 程 単 元 阶 次: 二 阶 ~	
轨边建模	
键合丝建模	
散熱器影響模	
灌封区城建模	
し、「「「「」」	

图 4-24 编辑随机振动分析

4.5.2. 仿真结果

随机振动的仿真结果包括摘要、寿命预测、随机振动结果表、位移云图和应 变云图。摘要有随机振动的最大位移、最大应变、仿真运行时间和建模的一些信 息,详细如图 4-25 所示。

随机振动		PCB属性		安装点属性	
最大位移阶段:	阶段1	网格类型:	合并的	安装点:	是
最大位移载荷:	随机振动	PCB建模:	Uniform	单元阶次:	二阶
循环频率:	437.2 Hz	PCB材料数:	100	最大网格大小:	2 mm
最大位移;	1.0e-2 mm	建模区域:	否	垂直网格:	1 mm
最大应变:	1.7e-4	单元阶次:	二阶	钻孔属性	
温度:	N/A	最小边长度:	1 mm	钻孔建模:	是
板的属性		最大网格大小:	2 mm	最小孔径:	1 mm
节点数:	2,720	垂直网格大小:	1 mm	最大边长:	1 mm
单元数:	3,661	最小网格角度:	15°	器件属性	
器件数:	59	最小四边形质量:	0.40	器件建模:	是
安装点数:	4	四边形比重:	0.000	单元阶次:	二阶
孔的数量:	134	轨道属性		最小器件大小:	1 mm
有限元分析		轨道建模:	N/A	最大网格大小:	2 mm
模型来源:	生成	单元阶次:	N/A	垂直网格:	1 mm
仿真求解器:	Calculix	最大网格大小:	N/A	引脚属性	
使用CPU核:	6	最大孔数:	N/A	引脚建模:	N/A
网格划分时间:	3.6s	散热器属性		单元阶次:	N/A
仿真时间:	1.2m	散热器:	N/A	最大网格大小:	N/A
处理时间:	12.2s	单元阶次:	N/A	垂直网格:	N/A
总时间:	1.5m	最大网格大小:	N/A	键合丝属性	
		垂直网格:	N/A	键合丝:	N/A
		灌注属性		单元阶次:	N/A
		灌封区域:	N/A	最长线段:	N/A
		单元阶次:	N/A	机械零件属性	
		最大网格大小:	N/A	机械零件:	N/A
		垂直网格:	N/A	单元阶次:	N/A
				最大网格大小:	N/A
				垂直网格:	N/A

图 4-25 随机振动仿真摘要

"随机振动"页签是每个器件的仿真结果,包括最大位移、最大应力、TTF、 不可靠度和安全等级,如图 4-26 所示。

器件ID	封装	器件类型	西	焊料	最大位移	最大应变	损伤	TTF (年) へ	不可靠度	等级
J2	BGA-144	集成电路	1E00	SAC305	1.0E-2	1.5E-4	3.1E-1	31.8	3.0	6.1
श	R0402	电阻	1E 00	SAC305	3.1E-3	3.5E-6	1.0E-6	>100	0.0	10.0
12	R0402	电阻	正面	SAC305	9.7E-3	1.5E-5	1.0E-6	>100	0.0	10.0
13	R0402	电阻	正面	SAC305	9.8E-3	1.1E-5	1.0E-6	>100	0.0	10.0
211	C0402	电容器	正面	SAC305	9.6E-3	4.4E-6	1.0E-6	>100	0.0	10.0
R4	R0402	电阻	正面	SAC305	9.7E-3	8.4E-6	1.0E-6	>100	0.0	10.0
C10	C0805	电容器	iΕœ	SAC305	8.5E-3	1.1E-5	1.0E-6	>100	0.0	10.0
25	R0402	电阻	正面	SAC305	9.2E-3	1.8E-5	1.0E-6	>100	0.0	10.0
013	C0402	电容器	正面	SAC305	1.0E-2	4.2E-6	1.0E-6	>100	0.0	10.0
R6	R0402	电阻	正面	SAC305	9.0E-3	1.3E-5	1.0E-6	>100	0.0	10.0
012	C0402	电容器	正面	SAC305	1.0E-2	3.7E-6	1.0E-6	>100	0.0	10.0
87	R0402	电阻	正面	SAC305	8.4E-3	7.7E-6	1.0E-6	>100	0.0	10.0
:15	C0402	电容器	正面	SAC305	8.2E-3	7.1E-6	1.0E-6	>100	0.0	10.0
88	R0402	电阻	正面	SAC305	9.4E-3	1.6E-5	1.0E-6	>100	0.0	10.0
14	C0402	电容器	IECO	SAC305	9.6E-3	4.6E-6	1.0E-6	>100	0.0	10.0
1	MINIUSB-AB-SM	连接器(JACK)	IE CO	SAC305	5.3E-3	5.9E-5	1.0E-6	>100	0.0	10.0
89	R0402	电阻	正面	SAC305	9.9E-3	1.5E-5	1.0E-6	>100	0.0	10.0
17	C0402	电容器	iE00	SAC305	9.7E-3	6.2E-6	1.0E-6	>100	0.0	10.0
2	DIP2X7_2P54	连接器(JACK)	iE00	SAC305	4.1E-3	2.6E-5	1.0E-6	>100	0.0	10.0
216	C0402	电容器	正面	SAC305	9.6E-3	4.8E-6	1.0E-6	>100	0.0	10.0
3	JP 2P54	连接器(JACK)	IED	SAC305	8.3E-3	1.8E-5	1.0E-6	>100	0.0	10.0
019	C0805	电容器	IEDD	SAC305	6.6E-3	3.5E-5	1.0E-6	>100	0.0	10.0
14	DIP2X30 2P54	连接器(JACK)	背面	SAC305	6.0E-3	2.8E-5	1.0E-6	>100	0.0	10.0
C18	C0805	电容器	正面	SAC305	6.3E-3	3.7E-5	1.0E-6	>100	0.0	10.0
15	DIP2X30 2P54	连接器(JACK)	背面	SAC305	6.2E-3	2.7E-5	1.0E-6	>100	0.0	10.0
51	SMD 3X4X2MM	ŦŦ	TETE	SAC305	1.6E-3	2.8E-5	1.0E-6	>100	0.0	10.0
20	C0402	由容器	TEM	SAC305	1.0E-2	6.0E-6	1.0E-6	>100	0.0	10.0
22	0805	由容器	TEM	SAC305	6.7E+3	1.75-5	1.05-6	>100	0.0	10.0
21	0402	由会器	11-00	540305	6 5E-3	1.05-5	1.05-6	>100	0.0	10.0
24	C0805	由家業	1Em	SAC305	315.3	7.9E-6	1.05-6	>100	0.0	10.0
-23	C0805	由会器	11-00	540305	2.65-3	7.25-6	1.05-6	>100	0.0	10.0
126	00003	中学学	11-00	SAC305	0.05.2	2.95.5	1.05-6	>100	0.0	10.0
20	0402	0.000	11_00	SAC305	0.05.2	2.00-5	1.05-6	>100	0.0	10.0
-20	00402	ch ch ch	TT UU	SACSOS	9.0E-3	346-5	1.02-0	-100	0.0	10.0
20	0402_1_2	ch ch ch	TE UU	SACSUS	9.02-3	3.4E-3	1.02-0	>100	0.0	10.0
.21	0402	电音音	TE UU	SAC305	0.92-3	4.22-5	1.02-0	>100	0.0	10.0
	0402	电音音	ICU	SAC305	8./E-3	3.5E-5	1.0E-0	>100	0.0	10.0
-2	0402	中国新聞	III COD	SAC305	0.72-3	3.36-5	1.02-0	>100	0.0	10.0
24	0402	电音音		SAC305	0.75-3	3.22-3	1.02-0	>100	0.0	10.0
4	0402	10,000	III UU	SAC305	8./E-3	2.82-5	1.0E-0	>100	0.0	10.0
	0402_1	电台 67	11_00	SAC305	8./E-3	2.9E-5	1.0E-6	>100	0.0	10.0
.0	0402	电音音	IEm	SAC305	9.5E-3	1.1E-4	1.0E-6	>100	0.0	10.0
.7	C0402	电音器	正面	SAC305	9.4E-3	9.1E-5	1.0E-6	>100	0.0	10.0
28	C0402	电容器	1E00	SAC305	9.8E-3	6.5E-6	1.0E-6	>100	0.0	10.0
:9	C0402	电容器	1E00	SAC305	9.6E-3	5.9E-6	1.0E-6	>100	0.0	10.0
ri 👘	TP_OBL1_4X0_6	变压器	1Edd	SAC305	9.4E-4	1.1E-5	1.0E-6	>100	0.0	10.0
2	TP OBL1 4X0 6	变压器	1E00	SAC305	5.5E-3	1.2E-5	1.0E-6	>100	0.0	10.0

图 4-26 随机振动仿真结果表

图表左下角的矩形区域以图形方式显示了此项目的所需可靠性目标,其顶部 由所需的故障概率限制,而右侧则由所需的使用寿命限制。如果曲线停留在最高 线以下,直到使用寿命,则表明电路板可以达到其目标。在这种情况下,电路板 在生命周期中定义的机械冲击事件下将无法达到其可靠性目标。如图 4-27 所示。

图 4-27 随机振动寿命预测

振动仿真运行后自动生成对应的位移和应变的仿真云图,如图 4-28 所示

图 4-28 随机振动仿真云图

5. 可靠性评估

- 5.1. 焊点疲劳
- 5.1.1. 无铅焊点二阶热疲劳模型

右键单击项目树中的"无铅焊点二阶热疲劳"树节点,然后从弹出菜单中选择"编辑属性"或者"运行分析任务"选项,如图 5-1 所示,弹出无铅焊点二阶 热疲劳属性对话框,如图 5-2 所示。

	🖃 🔕 可靠	性评估			
	😑 🔕 焊	点疲劳			
	4	、无铅炉	查看错误		
	1	」焊点热	查看结果		
	A	焊点热	编辑属性	莫型	
	4	3 镀通子	运行分析任务		
	😑 🔕 弓	线	清除分析结果		
	4	引线	文件路径		
	😑 🔕 芯	访 「	帮助]	
	图	5-1 选打	承框		
05 无铅焊点二	阶热疲劳属性				×
无铅焊点二阶热 仿真属性	疲劳寿命模型进行	于评估的参	数设置界面		
		焊料:	LEAD-FREE (SA	C305) 🗸	
	器件	温升:	0	c ~	
	应用最小	温升:	是	~	
*每个循环	累积的蠕变能重	密度: ?			
温度载荷					
	Di	₩1: 🗹	温度工况		
		9			

图 5-2 无铅焊点二阶热疲劳属性编辑框

编辑仿真属性相关信息,点击保存并运行,软件自动进行无铅焊点二阶热疲劳计算。评估结果如图 5-3 所示。

器件ID	封装	器件类型	面	材料	焊料	最大温差(°)	损伤 ∨	TTF (年)	故障循环次数
C1	C0402	电容器	正面	COPPER	SAC305	24.5	1.1E0	9.13	3,333
C2	C0402	电容器	正面	COPPER	SAC305	24.5	1.1E0	9.13	3,333
C3	C0402	电容器	正面	COPPER	SAC305	24.5	1.1E0	9.13	3,333
C4	C0402	电容器	正面	COPPER	SAC305	24.5	1.1E0	9.13	3,333
C5	C0402_1	电容器	正面	COPPER	SAC305	24.5	1.1E0	9,13	3,333
C6	C0402	电容器	正面	COPPER	SAC305	25.0	1.1E0	9.13	3,333
C7	C0402	电容器	正面	COPPER	SAC305	24.4	1.1E0	9.13	3,333
C8	C0402	电容器	正面	COPPER	SAC305	24.9	1.1E0	9.13	3,333
C9	C0402	电容器	正面	COPPER	SAC305	24.4	1.1E0	9.13	3,333
C10	C0805	电容器	正面	COPPER	SAC305	24.9	1.1E0	9.13	3,333
C11	C0402	电容器	正面	COPPER	SAC305	24.5	1.1E0	9.13	3,333
C12	C0402	电容器	正面	COPPER	SAC305	25.0	1.1E0	9.13	3,333
C13	C0402	电容器	正面	COPPER	SAC305	25.0	1.1E0	9.13	3,333
C14	C0402	电容器	正面	COPPER	SAC305	24.5	1.1E0	9.13	3,333
C15	C0402	电容器	正面	COPPER	SAC305	24.9	1.1E0	9.13	3,333
C16	C0402	电容器	正面	COPPER	SAC305	24.5	1.1E0	9.13	3,333
C17	C0402	电容器	正面	COPPER	SAC305	24.5	1.1E0	9.13	3,333
C18	C0805	电容器	正面	COPPER	SAC305	24.8	1.1E0	9.13	3,333
C19	C0805	电容器	正面	COPPER	SAC305	24.9	1.1E0	9.13	3,333
C20	C0402	电容器	正面	COPPER	SAC305	25.0	1.1E0	9.13	3,333
C21	C0402	电容器	正面	COPPER	SAC305	24.7	1.1E0	9,13	3,333
C22	C0805	电容器	正面	COPPER	SAC305	24.9	1.1E0	9.13	3,333
C23	C0805	电容器	正面	COPPER	SAC305	24.8	1.1E0	9.13	3,333
C24	C0805	电容器	正面	COPPER	SAC305	24.9	1.1E0	9.13	3,333
C25	C0402	电容器	正面	COPPER	SAC305	24.4	1.1E0	9.13	3,333
C26	C0402	电容器	正面	COPPER	SAC305	24.5	1.1E0	9.13	3,333
C27	C0402	电容器	正面	COPPER	SAC305	24.4	1.1E0	9.13	3,333
C28	C0402_1_2	电容器	正面	COPPER	SAC305	24.5	1.1E0	9.13	3,333
D1	Q0603	二极管	正面	COPPER	SAC305	24.7	1.1E0	9.13	3,333
J1	MINIUSB-AB-SM	连接器(JACK)	正面	COPPER	SAC305	24.9	1.1E0	9.13	3,333
J2	DIP2X7_2P54	连接器(JACK)	正面	COPPER	SAC305	24.9	1.1E0	9.13	3,333
J3	JP_2P54	连接器(JACK)	正面	COPPER	SAC305	24,9	1.1E0	9.13	3,333
J4	DIP2X30_2P54	连接器(JACK)	背面	COPPER	SAC305	24.6	1.1E0	9.13	3,333
J5	DIP2X30_2P54	连接器(JACK)	背面	COPPER	SAC305	24.7	1.1E0	9.13	3,333
R1	R0402	电阻	正面	COPPER	SAC305	24.7	1.1E0	9.13	3,333
R2	R0402	电阻	正面	COPPER	SAC305	24.9	1.1E0	9.13	3,333
R3	R0402	电阻	正面	COPPER	SAC305	24.9	1.1E0	9,13	3,333
R4	R0402	电阻	正面	COPPER	SAC305	24.9	1.1E0	9.13	3,333
R5	R0402	电阻	正面	COPPER	SAC305	24.9	1.1E0	9.13	3,333
R6	R0402	电阻	正面	COPPER	SAC305	24.9	1.1E0	9.13	3,333
R7	R0402	电阻	正面	COPPER	SAC305	24.8	1.1E0	9.13	3,333
R8	R0402	电阻	正面	COPPER	SAC305	24.8	1.1E0	9.13	3,333
R9	R0402	电阻	正面	COPPER	SAC305	24.9	1.1E0	9.13	3,333
R10	R0402	(HERE)	正面	COPPER	SAC305	247	1 1E0	013	3 3 3 3

图 5-3 无铅焊点二阶热疲劳评估结果

点击寿命预计,显现无铅焊点二阶热疲劳寿命预计曲线,如图 5-4 所示,图 表左下角的矩形区域以图形方式显示了此项目的所需可靠性目标,其顶部由所需 的故障概率限制,而右侧则由所需的使用寿命限制。如果曲线停留在最高线以下, 直到使用寿命,则表明电路板可以达到其目标。在这种情况下,电路板在生命周 期中定义的无铅焊点二阶热疲劳将无法达到其可靠性目标。

点击失效时间,显现无铅焊点二阶热疲劳元器件失效时间分布,如图 5-5 所示。

图 5-5 无铅焊点二阶热疲劳元器件失效时间分布

5.1.2. 焊点热疲劳模型

右键单击项目树中的"焊点热疲劳"树节点,然后从弹出菜单中选择"编辑 属性"或者"运行分析任务"选项,弹出冲击振动分析的属性对话框,如图 5-6 所示。编辑仿真属性相关信息,点击保存并运行,软件自动进行焊点热疲劳计算。

四 焊点热疲劳属性	×
为电路板组件定义一下默认器 具体的值。	件属性.如果要覆盖这些值,可以在器件编辑器中设置
仿真属性	
焊料:	LEAD-FREE (SAC305)
器件温升:	0 C ~
应用最小温升:	是 ~
温度载荷 阶段1: 🗹 温度	L况
保存并运行保存	重置取消帮助

图 5-6 焊点热疲劳属性编辑框

运行成功后,焊点热疲劳的仿真结果包括摘要、失效时间、寿命统计、表格,摘要包括仿真过程中的分析统计、板的属性、可靠性指标具体信息,如图 5-7 所示

分析统计		板的属性	
分析的零件:	210	电路板厚度:	2.1184 mm
缺少安装类型:	0	电路板CTExy:	1.78e-5 1/C
错误的安装类型:	0	电路板CTEz:	6.68e-5 1/C
缺少器件类型:	0	电路板Exy:	2.67e+4 MPa
缺少封装:	0	电路板Ez:	3.71e+3 MPa
错误封装:	15		
仿真错误:	16		
可靠性指标			
寿命:	10 年		
不可靠度阈值:	30.0%		

图 5-7 焊点热疲劳属性编辑框

"表格"页签是每个器件的仿真结果,包括最大温、最低温、损伤、TTF、 故障循环次数,如图 5-8 所示。

器件ID	封装	器件类型	模型	m	材料	焊料	最大温(°)	最低温(°)	损伤 ∨	TTF (年)	不可靠度	故障循环次数	等级
J1	SOT-223	集成电路	DIE物理模型	正面	COPPER	SAC305	69.40	-15.60	2.6E0	3.90	100.0	1,067	0.0
J3	SOT-223	集成电路	DIE物理模型	正面	COPPER	SAC305	65.10	-19.90	2.4E0	4.21	100.0	1,153	0.0
J2	BGA-144	集成电路	BGA物理模型	正面	COPPER	SAC305	70.00	-15.00	1.1E0	9.48	69.0	2,598	0.0
14	DIP2X30_2P54	连接器(JACK)	THRUHOLE物理模型	背面	COPPER	SAC305	69.20	-15.80	7.8E-2	>100	0.0	35,160	10.0
15	DIP2X30_2P54	连接器(JACK)	THRUHOLE物理模型	背面	COPPER	SAC305	67.60	-17.40	7.6E-2	>100	0.0	35,882	10.0
C10	C0805	电容器	CC物理模型	正面	COPPER	SAC305	69.00	-16.00	2.6E-2	>100	0.0	104,621	10.0
C22	C0805	电容器	CC物理模型	正面	COPPER	SAC305	67.50	-17.50	2.5E-2	>100	0.0	108,564	10.0
D1	Q0603	二极管	CC物理模型	正面	COPPER	SAC305	66.40	-18.60	2.5E-2	>100	0.0	109,803	10.0
C24	C0805	电容器	CC物理模型	正面	COPPER	SAC305	65.80	-19.20	2.5E-2	>100	0.0	111,180	10.0
C23	C0805	电容器	CC物理模型	正面	COPPER	SAC305	65.10	-19.90	2.4E-2	>100	0.0	113,194	10.0
C19	C0805	电容器	CC物理模型	正面	COPPER	SAC305	67.00	-18.00	2.3E-2	>100	0.0	117,756	10.0
C18	C0805	电容器	CC物理模型	正面	COPPER	SAC305	66.60	-18.40	2.2E-2	>100	0.0	126,853	10.0
C12	C0402	电容器	CC物理模型	正面	COPPER	SAC305	69.70	-15.30	7.1E-3	>100	0.0	384,468	10.0
C4	C0402	电容器	CC物理模型	正面	COPPER	SAC305	69.50	-15.50	7.1E-3	>100	0.0	385,653	10.0
R3	R0402	电阻	CC物理模型	正面	COPPER	SAC305	69.80	-15.20	7.1E-3	>100	0.0	386,947	10.0
C15	C0402	电容器	CC物理模型	正面	COPPER	SAC305	68.70	-16.30	7.1E-3	>100	0.0	387,347	10.0
C20	C0402	电容器	CC物理模型	正面	COPPER	SAC305	69.50	-15.50	7.0E-3	>100	0.0	388,738	10.0
01	C0402	电容器	CC物理模型	正面	COPPER	SAC305	69.50	-15.50	7.0E-3	>100	0.0	388,738	10.0
C2	C0402	电容器	CC物理模型	正面	COPPER	SAC305	69.40	-15.60	7.0E-3	>100	0.0	389,337	10.0
C3	C0402	电容器	CC物理模型	正面	COPPER	SAC305	69.40	-15.60	7.0E-3	>100	0.0	389,337	10.0
C5	C0402_1	电容器	CC物理模型	正面	COPPER	SAC305	69.40	-15.60	7.0E-3	>100	0.0	389,337	10.0
C28	C0402_1_2	电容器	CC物理模型	正面	COPPER	SAC305	68.70	-16.30	7.0E-3	>100	0.0	390,435	10.0
R2	R0402	电阻	CC物理模型	正面	COPPER	SAC305	69.70	-15.30	7.0E-3	>100	0.0	390,657	10.0
C6	C0402	电容器	CC物理模型	正面	COPPER	SAC305	69.70	-15.30	7.0E-3	>100	0.0	390,657	10.0
C8	C0402	电容器	CC物理模型	正面	COPPER	SAC305	69.70	-15.30	7.0E-3	>100	0.0	390,657	10.0
R4	R0402	电阻	CC物理模型	正面	COPPER	SAC305	69.00	-16.00	7.0E-3	>100	0.0	391,745	10.0
C13	C0402	电容器	CC物理模型	正面	COPPER	SAC305	69.50	-15.50	7.0E-3	>100	0.0	391,863	10.0
R8	R0402	电阻	CC物理模型	正面	COPPER	SAC305	68.80	-16.20	7.0E-3	>100	0.0	392,954	10.0
C11	C0402	电容器	CC物理模型	正面	COPPER	SAC305	68.70	-16.30	7.0E-3	>100	0.0	393,561	10.0
C7	C0402	电容器	CC物理模型	正面	COPPER	SAC305	68.90	-16.10	6.9E-3	>100	0.0	395,504	10.0
R5	R0402	电阻	CC物理模型	正面	COPPER	SAC305	68.50	-16.50	6.9E-3	>100	0.0	397,954	10.0
R12	R0402	电阻	CC物理模型	正面	COPPER	SAC305	69.00	-16.00	6.9E-3	>100	0.0	398,085	10.0
R7	R0402	电阻	CC物理模型	正面	COPPER	SAC305	68.20	-16.80	6.9E-3	>100	0.0	399,802	10.0
R11	R0402	电阻	CC物理模型	正面	COPPER	SAC305	68.60	-16.40	6.8E-3	>100	0.0	400,551	10.0
R6	R0402	电阻	CC物理模型	正面	COPPER	SAC305	68.20	-16.80	6.8E-3	>100	0.0	403,035	10.0
R13	R0402	电阻	CC物理模型	正面	COPPER	SAC305	68.40	-16.60	6.8E-3	>100	0.0	405,054	10.0
C07	C0402	db ::00.00	C C AM THE HATTH	11.000	COBBER	CACODE	60.00	17.00	675.2	- 100	0.0	410 905	10.0

图 5-8 焊点热疲劳表格信息

点击寿命预计,显现焊点热疲劳寿命预计曲线,如图 5-9 所示,图表左下角的矩形区域以图形方式显示了此项目的所需可靠性目标,其顶部由所需的故障概率限制,而右侧则由所需的使用寿命限制。如果曲线停留在最高线以下,直到使用寿命,则表明电路板可以达到其目标。在这种情况下,电路板在生命周期中定义的焊点热疲劳将无法达到其可靠性目标。

图 5-10 焊点热疲劳失效分布

▶ BGA 封装的焊点热疲劳模型简介

BGA 封装的几何结构如图 5-11 所示,包括内部的芯片(Die)、外围的注塑 (Overmold)、封装内部基板(Laminate)和焊球(Ball)。PCB 是电路板的基板, 元器件焊接在电路板上。

图 5-11 BGA 几何封装结构

以 U2 集成电路为例,封装名称是 BGA-144 为例,详细介绍 BGA 封装的焊点 热疲劳模型的计算过程。

- 1) 材料参数 热膨胀系数: $CTE_{die} = 2.6e^{-6}$ 、 $CTE_{lam} = 2.3e^{-5}$ 、 $CTE_{over} = 1.5e^{-5}$ 、 $CTE_{pcb} = 1.78e^{-5}$ 杨氏模量: $E_{die} = 1.3e^{5}$ 、 $E_{lam} = 1.17e^{4}$ 、 $E_{over} = 1.59e^{4}$ 、 $E_{pcb} = 2.39e^{4}$ 、 $E_{ball} = 2.80e^{4}$ 泊松比: $V_{die} = 0.18$ 、 $V_{lam} = 0.3$ 、 $V_{over} = 0.25$ 、 $V_{pcb} = 0.15$ 2) 几何参数 芯片: $L_{die} = 12.1mm$ 、 $W_{die} = 12.1mm$ 、 $t_{die} = 0.4mm$ 注塑: $t_{over} = 0.65mm$ 封装基板: $L_{lam} = 27mm$ 、 $W_{lam} = 27mm$ 、 $t_{lam} = 0.15mm$ 焊球: $h_{ball} = 0.7mm$ 、 $d_{ball} = 0.75mm$
- 3) 环境参数

图 5-12 仿真环境温度

仿真环境温度最低温是-30°、最高温是 55°,U2 仿真得到元器件最低

温-15°和最高温度 70°。

4) 材料和几何参数等价替换

图 5-13 内部结构划分

内部的芯片(Die)、外围的注塑(Overmold)、封装内部基板(Laminate)都 粘连(假设固连不会滑移)在一起,假设宽度相同,由于热膨胀系数不同,导致 各层材料间存在相互作用力。将包含芯片的分为 interior、外面不含芯片为 exterior 和封装四个角命名为 corner。通过单轴应力和单轴形变之间的比和热膨胀系数引 起的作用力计算得到。

热膨胀系数: $CTE_{interior} = 4.07e^{-6}$ 、 $CTE_{exterior} = 1.62e^{-5}$ 、 $CTE_{corner} = 1.07e^{-5}$ 杨氏模量: $E_{interior} = 7.22e^{4}$ 、 $E_{exterior} = 1.51e^{4}$ 、 $E_{corner} = 4.07e^{4}$ 泊松比: $V_{interior} = 0.2243$ 、 $V_{exterior} = 0.2594$ 、 $V_{over} = 0.2419$

5) 力学部分

封装基板面积: $A_{lam} = L_{lam} * W_{lam} = 27 * 27 = 729$ 单焊球面积: $A_{1ball} = 0.25 \times \pi \times d_{ball} \times d_{ball} = 0.4418$ 所有焊球的面积: $A_{allball} = N_{ball} \times A_{1ball} = 63.6173$ 单焊球剪切模量: $G_{ball} = \frac{E_{ball}}{2(1+v_{ball})} = 1.03e^4$ 单焊球有效剪切模量: $G = \frac{G_{ball} * A_{allball}}{A_{lam}} = 8.98e^2$ 电路板剪切模量: $G_{PCB} = \frac{E_{PCB}}{2(1+v_{PCB})} = 1.19e^4$

6) 评估部分

由于封装和 PCB 热膨胀系数的差异造成焊球切向的拉长,如图 5-14 所示。

图 5-14 焊球的热应变

中间的焊球经过计算可以得到

热应力=1.03e¹、

热应变=1.68e⁻²

最大切应变能=1.72e⁻¹、

失效前循环数=9.57e³

四处角的焊球经过计算可以得到

热应力=7.19、

热应变=1.93e⁻²

最大切应变能=1.38e⁻¹、

失效前循环数=1.19e4

因此、U2的失效前循环数为9.57e³,每个循环的时间约为8.2小时,因此预 计U2的寿命约为9.3年。

5.1.3. 焊点热疲劳 Darveaux 模型

右键单击项目树中的"焊点热疲劳 Darveaux"树节点,然后从弹出菜单中选择"编辑属性"或者"运行分析任务"选项,弹出冲击振动分析的属性对话框,如图 5-15 所示。编辑仿真属性相关信息,点击保存并运行,软件自动进行焊点热疲劳 Darveaux 计算。评估结果如图 5-16 所示。

U

仿真属性	£			
	焊料:	LEAD-FREE (SAC	305) 🗸	
	器件温升:	0	c ~	
	应用载小温井:	是	~	
温度载荷	ŧ			
	阶段1: 📝 温度工	况		
-	_			
保存并	运行 保存	電器	取消	帮助
UK12 Z1	AELTS DIKTS		-Miles	112.243

图 5-16 焊点热疲劳 Darveaux 模型评估结果

点击寿命预计,显现焊点热疲劳 Darveaux 模型寿命预计曲线,如图 5-17 所示,图表左下角的矩形区域以图形方式显示了此项目的所需可靠性目标,其顶部 由所需的故障概率限制,而右侧则由所需的使用寿命限制。如果曲线停留在最高 线以下,直到使用寿命,则表明电路板可以达到其目标。在这种情况下,电路板 在生命周期中定义的焊点热疲劳将无法达到其可靠性目标。

点击失效时间,显现焊点热疲劳 Darveaux 模型元器件失效时间分布,如图 5-18 所示。

图 5-18 焊点热疲劳 Darveaux 模型元器件失效时间分布

5.1.4. 镀通孔疲劳模型

右键单击项目树中的"镀通孔疲劳"树节点,然后从弹出菜单中选择"编辑属性"或者"运行分析任务"选项,弹出冲击振动分析的属性对话框,如图 5-19 所示。编辑仿真属性相关信息,点击保存并运行,软件自动进行镀通孔疲劳计算。 评估结果如图 5-20 所示。

3 镀通孔疲劳属性 输入要分析的孔类型的适当值	[×
* " 镀层材料:		~	
PTH质量因子:	优	~	
*镀层厚度:	0.8	mm ~	
*最小镀通孔:	20	mm ~	
*最大镀通孔:	20	mm ~	
温度载荷 阶段1:	🗹 温度工况		
保存并运行保	存重置	取消	帮助

图 5-19 镀通孔疲劳属性编辑框

X (mm)	Y (mm)	直径 (mm)	最大温差(°C)	损伤	TTF (年)	失效率 ~	
278.8920	210.6930	0.60	25.0	0.00	>100	0.0	
279.0190	227.3300	0.60	25.0	0.00	>100	0.0	
280.0386	203.5205	1.02	25.0	0.00	>100	0.0	
280.0386	206.0605	1.02	25.0	0.00	>100	0.0	
280.0386	242.6305	1.02	25.0	0.00	>100	0.0	
280.0386	245.1705	1.02	25.0	0.00	>100	0.0	
282.5786	203.5205	1.02	25.0	0.00	>100	0.0	
282.5786	206.0605	1.02	25.0	0.00	>100	0.0	
282.5786	242.6305	1.02	25.0	0.00	>100	0.0	
282.5786	245.1705	1.02	25.0	0.00	>100	0.0	
283.0685	232.9551	0.90	25.0	0.00	>100	0.0	
283.0685	237.3549	0.90	25.0	0.00	>100	0.0	
285.1186	203.5205	1.02	25.0	0.00	>100	0.0	
285.1186	206.0605	1.02	25.0	0.00	>100	0.0	
285.1186	242.6305	1.02	25.0	0.00	>100	0.0	
285.1186	245.1705	1.02	25.0	0.00	>100	0.0	
287.6586	203.5205	1.02	25.0	0.00	>100	0.0	
287.6586	206.0605	1.02	25.0	0.00	>100	0.0	
287.6586	242.6305	1.02	25.0	0.00	>100	0.0	
287.6586	245.1705	1.02	25.0	0.00	>100	0.0	
290.1986	203.5205	1.02	25.0	0.00	>100	0.0	
290.1986	206.0605	1.02	25.0	0.00	>100	0.0	
290.1986	242.6305	1.02	25.0	0.00	>100	0.0	
290.1986	245.1705	1.02	25.0	0.00	>100	0.0	
292.7386	203.5205	1.02	25.0	0.00	>100	0.0	
292.7386	206.0605	1.02	25.0	0.00	>100	0.0	
292.7386	242.6305	1.02	25.0	0.00	>100	0.0	
292.7386	245.1705	1.02	25.0	0.00	>100	0.0	
295.2786	203.5205	1.02	25.0	0.00	>100	0.0	
295.2786	206.0605	1.02	25.0	0.00	>100	0.0	
295.2786	242.6305	1.02	25.0	0.00	>100	0.0	
295.2786	245.1705	1.02	25.0	0.00	>100	0.0	
295.3520	217.2122	0.91	25.0	0.00	>100	0.0	
295.3520	219.7522	0.91	25.0	0.00	>100	0.0	
297.8186	203.5205	1.02	25.0	0.00	>100	0.0	
297.8186	206.0605	1.02	25.0	0.00	>100	0.0	
297.8186	242.6305	1.02	25.0	0.00	>100	0.0	
297.8186	245.1705	1.02	25.0	0.00	>100	0.0	
300.3586	203.5205	1.02	25.0	0.00	>100	0.0	

图 5-20 镀通孔疲劳模型评估结果

点击寿命预计,显现镀通孔疲劳模型寿命预计曲线,如图 5-21 所示,图表 左下角的矩形区域以图形方式显示了此项目的所需可靠性目标,其顶部由所需的 故障概率限制,而右侧则由所需的使用寿命限制。如果曲线停留在最高线以下, 直到使用寿命,则表明电路板可以达到其目标。在这种情况下,电路板在生命周 期中定义的焊点热疲劳将无法达到其可靠性目标。

5.2. 引线

0

5.2.1. 引线及焊盘热疲劳模型

右键单击项目树中的"引线及焊盘热疲劳"树节点,然后从弹出菜单中选择 "编辑属性"或者"运行分析任务"选项,弹出引线及焊盘热疲劳的属性对话框, 如图 5-23 所示。点击保存并运行,软件自动进行引线及焊盘热疲劳计算。评估 结果如图 5-24 所示。

图 5-22 镀通孔疲劳模型元器件失效时间分布

明 引线及焊盘热	疲劳属性			×
由于芯片材料、引线 下,沿引线方向出现 温度载荷 阶段1	浅材料以及芯片 见拉伸和收缩。 : ☑ 温度工况	基板材料的CT 多次的伸缩会)	E不匹配,导致右 产生热疲劳,从i	E循环热应力 而导致失效。
保存并运行	保存	重置	取消	帮助

键合丝ID	连接的器件	所在的面	键合丝材料	载荷名称	最大温差(°)	评估物理模型	损伤 ~	TTF (年)
WB1	U3	正面	ALUMINUM	阶段1/温度工况	24.9	焊盘剪切热疲劳(Coffin-Manson)	6.6E2	0.02
WB1	U3	正面	ALUMINUM	所选的全部载荷	24.9	焊盘剪切热疲劳(Coffin-Manson)	6.6E2	0.02
WB2	U3	正面	ALUMINUM	阶段1/温度工况	24.9	焊盘剪切热疲劳(Coffin-Manson)	6.6E2	0.02
WB2	U3	正面	ALUMINUM	所选的全部载荷	24.9	焊盘剪切热疲劳(Coffin-Manson)	6.6E2	0.02
WB3	U3	正面	ALUMINUM	阶段1/温度工况	24.9	焊盘剪切热疲劳(Coffin-Manson)	6.6E2	0.02
WB3	U3	正面	ALUMINUM	所选的全部载荷	24.9	焊盘剪切热疲劳(Coffin-Manson)	6.6E2	0.02
WB4	U3	正面	ALUMINUM	阶段1/温度工况	24.9	焊盘剪切热疲劳(Coffin-Manson)	6.6E2	0.02
WB4	U3	正面	ALUMINUM	所选的全部载荷	24.9	焊盘剪切热疲劳(Coffin-Manson)	6.6E2	0.02
WB5	U3	正面	ALUMINUM	阶段1/温度工况	24.9	焊盘剪切热疲劳(Coffin-Manson)	6.6E2	0.02
WB5	U3	正面	ALUMINUM	所选的全部载荷	24.9	焊盘剪切热疲劳(Coffin-Manson)	6.6E2	0.02
WB6	U3	正面	ALUMINUM	阶段1/温度工况	24.9	焊盘剪切热疲劳(Coffin-Manson)	6.6E2	0.02
WB6	U3	正面	ALUMINUM	所选的全部载荷	24.9	焊盘剪切热疲劳(Coffin-Manson)	6.6E2	0.02
WB2	U3	正面	ALUMINUM	阶段1/温度工况	24.9	引线拉伸热疲劳(Coffin-Manson)	4.3E1	0.23
WB2	U3	正面	ALUMINUM	所选的全部载荷	24.9	引线拉伸热疲劳(Coffin-Manson)	4.3E1	0.23
WB4	U3	正面	ALUMINUM	阶段1/温度工况	24.9	引线拉伸热疲劳(Coffin-Manson)	4.3E1	0.23
WB4	U3	正面	ALUMINUM	所选的全部载荷	24.9	引线拉伸热疲劳(Coffin-Manson)	4.3E1	0.23
WB5	U3	正面	ALUMINUM	阶段1/温度工况	24.9	引线拉伸热疲劳(Coffin-Manson)	4.3E1	0.23
WB5	U3	正面	ALUMINUM	所选的全部载荷	24.9	引线拉伸热疲劳(Coffin-Manson)	4.3E1	0.23
WB6	U3	正面	ALUMINUM	阶段1/温度工况	24.9	引线拉伸热疲劳(Coffin-Manson)	4.3E1	0.23
WB6	U3	正面	ALUMINUM	所选的全部载荷	24.9	引线拉伸热疲劳(Coffin-Manson)	4.3E1	0.23
WB3	U3	正面	ALUMINUM	阶段1/温度工况	24.9	引线拉伸热疲劳(Coffin-Manson)	4.3E1	0.23
WB3	U3	正面	ALUMINUM	所选的全部载荷	24.9	引线拉伸热疲劳(Coffin-Manson)	4.3E1	0.23
WB1	U3	正面	ALUMINUM	阶段1/温度工况	24.9	引线拉伸热疲劳(Coffin-Manson)	4.3E1	0.23
WB1	U3	正面	ALUMINUM	所选的全部载荷	24.9	引线拉伸热疲劳(Coffin-Manson)	4.3E1	0.23
WB1	U3	正面	ALUMINUM	阶段1/温度工况	24.9	引线剪切热疲劳(Coffin-Manson)	3.8E-1	26.05
WB1	U3	正面	ALUMINUM	所选的全部载荷	24.9	引线剪切热疲劳(Coffin-Manson)	3.8E-1	26.05
WB2	U3	正面	ALUMINUM	阶段1/温度工况	24.9	引线剪切热疲劳(Coffin-Manson)	3.8E-1	26.05
WB2	U3	正面	ALUMINUM	所选的全部载荷	24.9	引线剪切热疲劳(Coffin-Manson)	3.8E-1	26.05
WB3	U3	正面	ALUMINUM	阶段1/温度工况	24.9	引线剪切热疲劳(Coffin-Manson)	3.8E-1	26.05
WB3	U3	正面	ALUMINUM	所选的全部载荷	24.9	引线剪切热疲劳(Coffin-Manson)	3.8E-1	26.05
WB4	U3	正面	ALUMINUM	阶段1/温度工况	24.9	引线剪切热疲劳(Coffin-Manson)	3.8E-1	26.05
WB4	U3	正面	ALUMINUM	所选的全部载荷	24.9	引线剪切热疲劳(Coffin-Manson)	3.8E-1	26.05
WB5	U3	正面	ALUMINUM	阶段1/温度工况	24.9	引线剪切热疲劳(Coffin-Manson)	3.8E-1	26.05
WB5	U3	正面	ALUMINUM	所选的全部载荷	24.9	引线剪切热疲劳(Coffin-Manson)	3.8E-1	26.05
WB6	U3	正面	ALUMINUM	阶段1/温度工况	24.9	引线剪切热疲劳(Coffin-Manson)	3.8E-1	26.05
WB6	U3	正面	ALUMINUM	所选的全部载荷	24.9	引线剪切热疲劳(Coffin-Manson)	3.8E-1	26.05

图 5-23 引线及焊点热疲劳属性编辑框

图 5-24 引线及焊点热疲劳模型评估结果

点击寿命预计,显现引线及焊点热疲劳模型寿命预计曲线,如图 5-25 所示, 图表左下角的矩形区域以图形方式显示了此项目的所需可靠性目标,其顶部由所 需的故障概率限制,而右侧则由所需的使用寿命限制。如果曲线停留在最高线以 下,直到使用寿命,则表明电路板可以达到其目标。在这种情况下,电路板在生 命周期中定义的焊点热疲劳将无法达到其可靠性目标。

点击失效时间,显现引线及焊点热疲劳模型元器件失效时间分布,如图 5-26 所示。

5.3. 芯片

5.3.1. 断裂寿命模型

右键单击项目树中的"断裂寿命模型"树节点,然后从弹出菜单中选择"编辑属性"或者"运行分析任务"选项,弹出断裂寿命模型属性对话框,如图 5-27 所示。点击保存并运行,软件自动进行芯片断裂寿命计算。评估结果如图 5-28 所示。

			ر د++
过应力温度循环载	荷引起的芯片断裂, 副菇测的目共员在燃	因为芯片和衬底热膨胀;	系数不匹配而引起
的应力或何, 该惧	型规则的是心厅住第	一	見空假设断殺深度
和长度对万椭圆形	,殺狄病部的塑性区	观忽略个计,与Suhirs	Vert Crack模型小
同的是,心后机约	底的温度可以分别定	EX.	
泪度載荷			
THE SEAMING			
阶段1	: 📝 温度丁况		
阶段1	: 🗹 温度工况		
阶段1	: 🗹 温度工况	11.2	

图 5-27 芯片断裂寿命模型属性编辑框

器件ID	所在的面	芯片材料	载荷名称	最大温差(°)	评估物理模型	损伤 ~	TTF (年)	故障循环次数
U1	正面	SILICON	阶段1/温度工况	24.9	芯片断裂模型	-2.8E3	>100	-1
J2	正面	SILICON	阶段1/温度工况	25.0	芯片断裂模型			
J4	正面	SILICON	阶段1/温度工况	24.8	芯片断裂模型	-2.4E3	>100	-2
U3	正面	SILICON	阶段1/温度工况	24.9	芯片断裂模型	-2.8E3	>100	-1

图 5-28 芯片断裂寿命模型评估结果

点击寿命预计,显现芯片断裂寿命模型寿命预计曲线,如图 5-29 所示,图 表左下角的矩形区域以图形方式显示了此项目的所需可靠性目标,其顶部由所需 的故障概率限制,而右侧则由所需的使用寿命限制。如果曲线停留在最高线以下, 直到使用寿命,则表明电路板可以达到其目标。在这种情况下,电路板在生命周 期中定义的焊点热疲劳将无法达到其可靠性目标。

点击失效时间,显现引线及焊点热疲劳模型元器件失效时间分布,如图 5-30 所示。

图 5-30 芯片断裂寿命模型元器件失效时间分布

5.3.2. 芯片与基板连接断裂寿命模型

右键单击项目树中的"芯片与基板连接断裂寿命"树节点,然后从弹出菜单 中选择"编辑属性"或者"运行分析任务"选项,弹出芯片与基板连接断裂寿命 模型属性对话框,如图 5-31 所示。编辑仿真属性相关信息,点击保存并运行, 软件自动进行芯片与基板连接断裂寿命计算。评估结果如图 5-32 所示。

与芯片相比很小,与Westerg 下,芯片和衬底之间温度的差	gaard Bolger 模型不同的是, 誤异。	它考虑了操作条件
仿真属性		
*芯片横向椭圆等	裂纹深度: 🥐	
*芯片橫向椭圆雪	裂纹长度: 🥐	
*芯片横向裂纹的初始象	烈纹深度: ?	
温度载荷		
阶段1: 🗹 温度	工况	

图 5-31 芯片与基板连接断裂模型寿命属性编辑框

	器件ID	所在的面	芯片材料	载荷名称	最大温差(°)	评估物理模型	损伤 ~	TTF (年)	故障循环次数
l	U2	正面	SILICON	阶段1/温度工况	25.0	芯片与基板连接断裂寿命模型	-7.8E2	>100	-5
	U3	正面	SILICON	阶段1/温度工况	24.9	芯片与基板连接断裂寿命模型	-8.3E2	>100	-4
	U1	正面	SILICON	阶段1/温度工况	24.9	芯片与基板连接断裂寿命模型	-8.3E2	>100	-4
	U4	正面	SILICON	阶段1/温度工况	24.8	芯片与基板连接断裂寿命模型	-8.4E2	>100	-4

图 5-32 芯片与基板连接断裂模型评估结果

点击寿命预计,显现芯片与基板连接断裂模型寿命预计曲线,如图 5-33 所示,图表左下角的矩形区域以图形方式显示了此项目的所需可靠性目标,其顶部 由所需的故障概率限制,而右侧则由所需的使用寿命限制。如果曲线停留在最高 线以下,直到使用寿命,则表明电路板可以达到其目标。在这种情况下,电路板 在生命周期中定义的焊点热疲劳将无法达到其可靠性目标。

点击失效时间,显现芯片与基板连接断裂模型元器件失效时间分布,如图 5-34 示。

5.3.3. 芯片连接界面疲劳断裂寿命模型

右键单击项目树中的"芯片与连接界面疲劳断裂寿命"树节点,然后从弹出 菜单中选择"编辑属性"或者"运行分析任务"选项,弹出芯片与连接界面疲劳 断裂寿命模型属性对话框,如图 5-35 所示。点击保存并运行,软件自动进行芯 片与连接界面疲劳断裂寿命计算。评估结果如图 5-36 所示。

LWSIM

度均为椭圆形,裂纹端部的塑性区域忽略不计。 温度载荷 阶段1: 🗹 温度工况	士芯片材料与芯) 接界面的牵拉, 7 载荷, 该模型预;	片基板材料的C 产生剪切应力。 则的是芯片在第	TE不匹配,导致 因为芯片和衬加 一周循环出现的	收在循环热应力 虎热膨胀系数不 的断裂,模型假	下,出现对芯片 匹配而引起的应 设断裂深度和长
温度载荷 阶段1: <mark>√</mark> 温度工况	均为椭圆形,裂线	<u>文</u> 端部的塑性区	域忽略不计。		
	品度载荷 阶段1	: 🗹 温度工况			
				NB 20	

图 5-35 芯片与连接界面疲劳断裂寿命模型属性编辑框

器件ID	所在的面	芯片材料	载荷名称	最大温差(°)	评估物理模型	损伤 ~	TTF (年)	故障循环次数
U1	正面	SILICON	阶段1/温度工况	24.9	芯片连接界面疲劳断裂寿命模型	3.8E3	0.00	1
U3	正面	SILICON	阶段1/温度工况	24.9	芯片连接界面疲劳断裂寿命模型	3.8E3	0.00	1
U4	正面	SILICON	阶段1/温度工况	24.8	芯片连接界面疲劳断裂寿命模型	3.8E3	0.00	1
U2	正面	SILICON	阶段1/温度工况	25.0	芯片连接界面疲劳断裂寿命模型	3.7E3	0.00	1

图 5-36 芯片与连接界面疲劳断裂寿命模型评估结果

点击寿命预计,显现芯片与连接界面疲劳断裂寿命模型寿命预计曲线,如图 5-37 所示,图表左下角的矩形区域以图形方式显示了此项目的所需可靠性目标, 其项部由所需的故障概率限制,而右侧则由所需的使用寿命限制。如果曲线停留 在最高线以下,直到使用寿命,则表明电路板可以达到其目标。在这种情况下, 电路板在生命周期中定义的焊点热疲劳将无法达到其可靠性目标。

点击失效时间,显现芯片与连接界面疲劳断裂寿命模型元器件失效时间分布,如图 5-38 所示。

图 5-38 芯片与连接界面疲劳断裂寿命模型元器件失效时间分布

6. 故障物理模型计算

6.1. 镀通孔疲劳

点击"镀通孔疲劳",系统弹出镀通孔疲劳界面。用户根据提示输入"孔的 属性"、"板的属性"、"温度载荷谱"信息,可进行对镀通孔疲劳的计算,如图 6-1 所示。

孔的属性				板的属性			
质里因子:	Good		~	板厚:	1.6	mm	~
孔的直径:	0.3048	mm	~	弹性模里(Z方向):	3447	MPA	×
壁的厚度:	0.020	mm	~	板的膨胀系数(Z方向):	70	ppm/C	~
温度载荷谱				结果			
最低温度:	0.0	c	~	失效循环次数:			
最大温度:	100.0	c	~	PTH的镀铜层应力:			

图 6-1 镀通孔疲劳

6.2. 焊点热疲劳

点击"焊点热疲劳",系统弹出焊点热疲劳界面。用户根据提示输入"焊点 属性"、"板的属性"、"温度载荷谱"等信息,可进行对焊点疲劳的计算,如图 6-2 所示。

属性					封装的属性		
焊料:	LEAD-FREE (SAC305)			~	封装名称:	C-BEND-2012-12	
焊锡厚度:	0.0635	MM		~	封裝(长度)单位:	MM	
焊点热疲劳模型:	LEADED物選模型			~	封装长度:	1.79	
*失效循环次数:					封装宽度:	1.35	
度载荷谱					封装厚度:	1.15	
載低温度 :	0.0		С	~	封装基板材料:	Generic FR-4 Generic FR-4	
最小 停留时间:	20	3	8 . 1	~			
最高温度:	100.0		С	~	封装材料:	TANTALUM	
最大停留时间:	20	3	ð 1	~	引脚属性		
器件最低温度:	0.0		C	~	引脚数量:	2	
證件載高温度:	100.0		С	~	引脚几何:	C_LEAD	
远的属性 指示的原始。	4.0				引脚材料:	COPPER 🗸	
10月11年1克-	1.0	MIN		~	引脚高度:	0.725	
10(13)AUS- 振的对单於 排骨(F)	20103	NIN	IDA		引脚宽度:	0.9	
版的膨胀系称(CTF)	17	0.00	m/C		引脚厚度:	0.13	
DEM JIGHT JCER (C + C)		PP			引即(则站在PCB)的长度:	0.5	
					焊接引线孔的直径:	1.1093404203047394	
					引脚的排列方式:	DUAL_SHORT V	
					中心间距:	1	
					引脚弯曲程度(度):	90.0	
					未弯曲的长度:	0.25	
					距器件底部的距离:	0.15	
					长边的引脚数里:		
					短边的引脚数量:		
					散热片长度:	1	
					散热片宽度:	1.79	
					散热片厚度:	0.13	

图 6-2 焊点热疲劳

6.3. 焊点 Darvraux

点击"焊点 Darvraux",系统弹出焊点 Darvraux 界面。用户根据提示输入"焊球的属性"、"仿真的属性"、"温度载荷谱"等信息,可进行对焊点 Darvraux 的计算,如图 6-3 所示。

四 焊点热疲劳Darveaux				×
针对BGA、CSP封装器件由于 的。由此造成的膨胀和收缩若 频率越大、热膨胀系数不同的	热疲劳引起的焊点失效可以使用) 受到约束时,在零件内部就会产 材料组合时、材料的塑性越差、	此模型进行计算。所谓焊点热磁 生热应力(又称温差应力)。 晶粒粗大且不均匀越易产生热	麦劳是指: 金属焊点在高温条件下工作; 晶度反复变化, 热应力也随着反复变化 麦劳。	时,其环境温度并不恒定,而有时是急剧反复变化 ,从而使材料受到疲劳损伤。环境的温度梯度及变化
焊球的属性	·		仿真的属性	
焊球直径:	1 mm ~		焊球应变部位体积和: 50	mm3 💛
焊球数里:			结果	
焊球的塑性功:	200 W ~		失效循环次数:	
温度载荷谱				
载低温度 :	25 C ~			
載高温度:	100 C ~			
		计算 重置	关闭 帮助	

图 6-3 焊点 Darvraux

6.4. 焊点振动疲劳

点击"焊点振动疲劳",系统弹出焊点振动疲劳界面。用户根据提示输入"焊 点属性"、"模型算法"、"封装的属性"、"仿真的属性"等信息,可进行对焊点振 动疲劳失效循环次数计算,如图 6-4 所示。

	本的动力学响应结性 担头	マ仕管のこの振行
	TOUS AND A	」 口 户 P C D IX 旦
性		
*焊料:	EAD-FREE (SAC305)	~
性		
临界最高温度:	230	с ~
最大应变:	0.01	
失效循环数:		

图 6-4 焊点振动疲劳

6.5. 芯片断裂

点击"芯片断裂",系统弹出芯片断裂计算界面。用户根据提示选择"模型 算法"、"基板的属性"、"芯片粘连层属性"、"芯片属性""仿真的属性"等信息, 可对芯片断裂疲劳寿命进行计算,如图 6-5 所示。

寿命模型:	? 芯片连接界面疲劳断裂病	命模型	~	芯片材料:	ARLON 92ML		~
版的屬性				*芯片材料的泊松比:	0.33		
基板材料:	Generic FR-4 Generic FR-4			*芯片材料的弹性模里:	18000.0	MPA	
*基板材料的弹性模里:	2.48E4	MPA		*芯片材料的热腹胀系数:	2.0E-5	ppm/C	Mark
*基板材料的热膨胀系数:	1.7E-5	ppm/C		*芯片厚度:		IN	~
*基顿材料的泊松比:	0			*芯片长度:		IN	2
*基倾厚度:	IN			*芯片宽度:		IN	~
*电路板的厚度:	IN			仿真属性			
*电路板的宽度:	IN			*每天的温度循环次数:		8	~
计粘结层属性				"循环温度:		C	
芯片粘结层材料:	ALLOY42			结果			
*拉伸疲劳强度系数:	: 0.075			芯片断裂疲劳寿命:			
*拉伸疲劳强度指数:	-0.07						
*芯片粘结弹性模里:	145000.0	MPA					
*芯片粘结层泊松比:	0.25						
*芯片粘结厚度:	IN						

图 6-5 芯片断裂模型

6.6. 芯片电迁移

点击"芯片电迁移",系统弹出芯片金属化电迁移界面。用户根据提示选择 "模型算法"、"芯片的属性"等信息,可对芯片金属化电迁移进行平均失效前时 间计算,如图 6-6 所示。

西 芯片金属化电迁移			x
当器件工作时,金属互连线的铝条内有一定的电流通过	,计算 <mark>电迁移</mark> 的失效周期。	金属离子会沿导体产生质量的运输,	其结果会在阴极局部形成空洞,造成开路失效;在阳极局部形成
相知((),11) 2000,2000,2000,2000,000,000-001,199,0038.0			
寿命模型: ? Calce模型	~		
芯片的属性			
*芯片金属化线的宽度:	micron 🕹	*芯片金属化线的厚度:	micron 🐱
*激活能:	eV 🗸	*芯片工作时的温度:	к ~
*金属化线的电流密度:	A/m2 🗸		
结果			
平均失效前时间(小时):			
	计算	重置 关闭 帮助	1

图 6-6 芯片金属化电迁移

6.7. 热载流子

点击"热载流子",系统弹出热载流子界面。用户根据提示选择"模型算法"、 "热载流子的属性"等信息,可对热载流子进行平均失效前时间计算,如图 6-7 所示。

··· 热载流子					
热载流了是指其能量比费米能级大几个 面态、氧化层陷阱或被陷阱所俘获,从 电流、漏极电流,代替了电场强度等随	kT以上的載流子。热 而使氧化层中的电荷 即直接得到的参数。	/戴流子注入效应是指 增加或波动不稳。此/	这些热载流子与晶格不处于热平缓 模型描述了直流电下的热载流子注	状态,当其能量达到或超) 入寿命,应用广泛。相较于	过界面势类时便会注入到氧化层中,产生界 F原始的LE模型,此模型以容易测量的基底
模型算法 寿命模型:	? 直流电下的LE模型	2	~		
热载流子的属性					
*模型系数:	1.9		*沟道宽度:		micron 🗸
*生成果而陷阱的态度(m ⁻² .1 ⁻¹)			*生成界面陷阱的能量:	3.7	eV ~
*碰撞电离电子能;	1.3	eV ~	*漏酒申流:		A ~
*拟合参数(0.5~1):	0.65		*其底由 冻:		A ~
/+用			Enclose - Contraction -		
^{11未} 平均失效前时间(小时);					

图 6-7 热载流子

6.8. 栅氧化层击穿

点击"栅氧化层击穿",系统弹出栅氧化层介质击穿界面。用户根据提示选择"模型算法"、"栅氧化层介质击穿的属性"等信息,可对栅氧化层击穿进行平均失效前时间计算,如图 6-8 所示。

西 栅氧化层介质击穿			×
一份 個氧化层介质击穿过程,目前认为可分为两个阶段,第一阶 定程度以后,使局部区域的电场(或陷阱数)达到某一临界 一位。	阶段是建立 (磨损) 阶段,在电应力作用 界值,转入第二阶段;在热、电正反馈作用	F,氧化层内部及Si/SiO2界面处发生缺陷(陷 用下,迅速使氧化层击穿,器件无法正常工作。	阱,电荷) 的积累,积累的缺陷达到一 栅氧寿命由第一阶段中的建立时间所
模型算法			
寿命模型: ? 栅氧(化层介质击穿-Calce的1/E模型	~	
栅氧化层介质击穿的属性			
*外封装盖的厚度:	micron 😔	*氧化层门电压: 1	V ~
*芯片工作时的温度:	κ ~		
结果			
平均失效前时间(小时):			
	计算 重置 🗦	(闭 帮助	

图 6-8 栅氧化层击穿

6.9. 孔洞扩散生长

点击"孔洞扩散生长",系统弹出孔洞扩散生长界面。用户根据提示选择"模型算法"、"应力导致的孔洞扩散生长的属性"等信息,可对孔洞扩散生长进行平均失效前时间计算,如图 6-9 所示。
模型算法 寿命模型: ? 应力导致的孔调扩散生长-OE1模型
寿命模型: ? 应力导致的孔调扩散生长-OE1模型 应力导致的孔洞扩散生长的属性 *金属化线宽度: *金属化线方程: *金属化线方程: *金属化线方程:
应力导致的孔洞扩散生长的属性 *金属化线宽度: mm ~ *金属化线材料的泊松比: *
*金属化线宽度: mm · *金属化线材料的泊松比: *
*县校扩散系来
前前用3/ HZ/JCSX1
*金属化线厚度: mm ~ *芯片工作时的温度: K ~
*被动沉淀温度:
结果
平均失效前时间 (小时):

图 6-9 孔洞扩散生长

6.10. 静电放电

点击"静电放电",系统弹出静电放电界面。用户根据提示选择"模型算法"、 "静电放电的属性"等信息,可对静电放电进行平均失效前时间计算,如图 6-10 所示。

辞 静电放电			×
集成电路在加工生产、组装、存储及运输的过程 损伤,而MOS器件特别敏感。静电放电失效机理 缘部分,以及结构上的薄弱处,如细丝、薄氧化	中,可能与带静电的容器、测试设备及 更可分为过电压场致失效和过电流热致 层、浅结、热容量小的地方等。静电排	8攝作人员相接触,所蒂静电经过器件引线放电到此 失效。ESD发生的部位多半是在器件易受静电影响 员伤模式有突发性失效、潜在性失效、静电损伤模型	8,使器件受到损伤或失效,它对各类器件都有 的部分,如输入回路、输出回路、电场集中的边 型。
模型算法			
寿命模型:	? 静电放电Wunsch-Bell模型	~	
静电放电的属性			
*结面积:	cm2 ~	*密度:	g/cc 🛩
*热导率:	W/cm-C 🗸	*比热容:	J/g·C 🕹
*失效温度:	C ~	*初始温度:	к ~
*功率:	w ~		
结果			
平均失效前时间(小时):			
	计算 重置	登 关闭 帮助	

图 6-10 静电放电

6.11. 双极管晶体

点击"双极晶体管",系统弹出双极晶体管界面。用户根据提示选择"模型 算法"、"双极晶体管的属性"等信息,可对双极晶体管进行晶体管集电极电流计 算,如图 6-11 所示。

双极晶体管是一种具有三个终端的电子器件,由 步及电子和空穴两种戴流子的流动,因此它被称 图化而变化。	三部分掺杂程度不同的半导体制成, 为双极性的,所以也称双极性 <mark>载</mark> 流子	晶体管中的电荷流动主要是由于载流子在PN结划 晶体管。在方波脉冲信号、正弦波信号和三角波	的扩散作用和漂移运动,这种晶体管的工作,同时 信号作用下器件烧毁时间随电压幅值和信号的频率
模型算法			
寿命模型:	? 电迁移模型	~	
双极晶体管的属性			
元器件的载流子类型:	电子	本征载流子浓度:	Si
*发射结面积:	mm2 ~	*基区杂质浓度(mm ⁻³):	
*基区宽度:	mm ~	*发射结上外电压:	v ~
*电场强度(N/C):		*晶格温度:	к ~
结果			
晶体管集电极电流:			
		•	
		•	
	计算 童	賣 关闭 鞋助	

图 6-11 双极晶体管

6.12. 阳极空穴注入

点击"阳极空穴注入",系统弹出阳极空穴注入界面。用户根据提示选择"模型算法"、"强电磁脉冲导致的阳极空穴的属性"等信息,可对阳极空穴注入进行 MOSFET的击穿前时间计算,如图 6-12 所示。

99 阳极空穴注入			×
所谓TDDB失效是与时间有关的一种电介质的击击 电流通过击穿点,导致局部加热,且常常在栅破	察现象。当电压超过了栅氧化层的击穿电 裂位置产生金属硅合金,形成贯穿栅极的	压时,ESD 会导致 MOS 器件栅氧化层破裂(对双极型 短路电阻。	^{退器件,击穿主要发生在器件体内)。大}
模型算法			
寿命模型:	? TDDB的阳极空穴注入模型	<u>~</u>	
强电磁脉冲导致的阳极空穴的属性			
*绝对温度:	κ ~	*介质层所加电场(MV/mm):	
结果			
MOSFET的击穿前时间:			
	计算 重置	关闭帮助	

图 6-12 阳极空穴注入

6.13. 腐蚀寿命

点击"腐蚀寿命",系统弹出腐蚀寿命界面。用户根据提示选择"模型算法"、 "腐蚀寿命模型的属性"等信息,可对腐蚀寿命进行疲劳寿命计算,如图 6-13 所 示。

テム まる まかし			
寿節視型:	?」型封發件H1模型	~	
寿命模型的属性			
腦弛滲透参数:	南 (*)	*导线长度:	in ~
*导线宽度:	in 🛩	*导线高度:	in 🛩
*内部压强:	PA ~	*外部压强:	PA ~
*原子化合价:		*密度:	g/cc 🗸
相对原子质量(g):	0 ~	*电压:	v ~
*绝对温度:	c ~	*相对湿度:	

图 6-13 腐蚀寿命

6.14. 枝晶生长

点击"枝晶生长",系统弹出枝晶生长界面。用户根据提示选择"模型算法"、 "枝晶生长的属性"等信息,可对枝晶生长进行寿命计算,如图 6-14 所示。

9月 枝晶生长				,
在电极间由于吸湿和偏压等	备作用,在PCB绝缘表面析出的标	时枝状金属或其化合物称为枝晶生长。		
模型算法				
	寿命模型: ? 枝晶을	E长模型	~	
枝晶生长的属性				
	*导线间距:	in 🕹	*导线宽度:	in 🗸
	*电势差:	V ~	*相对湿度:	
	*绝对温度:	c ~		
结果				
	寿命(小时):			
		计符 重要 *	<u>午前</u> — ——————————————————————————————————	
			TEAU TEAU	

图 6-14 枝晶生长

6.15. 导电阳极丝

点击"导电阳极丝",系统弹出导电阳极丝界面。用户根据提示选择"模型 算法"、"导电阳极丝的属性"等信息,可对导电阳极丝进行平均寿命计算,如图 6-15 所示。

69 导电阳极丝			×
导电阳极丝寿命模型适用于基板内部或外表面			
模型算法			
寿命模型:	? 导电阳极丝寿命模型	~	
导电阳极丝的属性			
*导线间距:	in 🛩	*加速因子:	
*校正因子:		*几何加速因子:	
*电压:	v ~	*含湿里:	
结果			
平均寿命:			
	计算重置	关闭帮助	

图 6-15 导电阳极丝

6.16. 金属间化合物

点击"金属间化合物",系统弹出金属间化合物界面。用户根据提示选择"模型算法"、"金属间化合物的属性"等信息,可对金属间化合物进行寿命计算,如图 6-16 所示。

至 金属间化合物			×
在电子封装焊接和服役过程中,焊料与基板间的 脆性,引起焊点中微裂纹萌生乃至断裂。	交互作用导致了界面金属间化合物的形成与生长	。随着界面处的金属间化合物厚度的增加,超过某一临界	值时,金属间化合物会表现出
模型算法			
寿命模型:	? 金属间化合物模型	~	
金属间化合物的属性			
*厚度阈值:	in ~	*激活能:	eV 🗸
*绝对温度:	C ~		
结果			
寿命(小时):			
	计算 重置	关闭 帮助	

图 6-16 金属间化合物

6.17. 陶瓷电容器

点击"陶瓷电容器",系统弹出陶瓷电容器绝缘电阻退化界面。用户根据提示选择"模型算法"、"陶瓷电容器的属性"等信息,可对进行电容寿命计算,如图 6-17 所示。

四 陶瓷电容器绝缘电阻	退化			×
陶瓷电容器(MLC)在贮存过	1程中的的效模式主要为损耗增大	,绝缘电阻下降,并且随着环境温度和湿度的	的上升,MLC的性能退化加剧。	
模型算法				
	寿命模型: ? 陶瓷电	容器绝缘电阻退化模型	~	
陶瓷电容器的属性				
	*实际工作电压:	v ~	*实际工作温度:	с ~
结果				
	电容寿命(小时):			
		计算 重置 关	闭帮助	

图 6-17 陶瓷电容器

- 7. 确信可靠度评估
- 7.1. 振动确信可靠度评估

右键单击项目树中的"振动应力确信可靠度"树节点,然后从弹出菜单中选择"编辑属性"或者"运行分析任务"选项,弹出振动应力确信可靠度属性对话框,如图 7-1 所示

	数据源	生成	~		
方真属性					
保存的结果数:	1	\sim	*简谐阻尼修改因子:	0.2	
随机阻尼修改因子:	0.2		冲击阻尼修改因子:	-0.05	
*最小频率:	10 HZ	~	*最大频率:	2000	HZ
温度:	C	~			
高动应力确信可靠度载荷					
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	क्त				
▲ 正弦振	ವೆ.				
☑ 竝加振	ನ				
The P server					
	全部选	中 清除	所有		
角信可靠度属性					
*倍频乘系数:	2				
*倍频乘系数:	2	7			
*倍频乘系数: PCB建模	2 网络类	型: 独自的	v		
*倍频乘系数: PCB建模 器件建模 会装占建模	2 网格类组 区域建	型: <u>独自的</u> 摸: 否	~		
* 信频乘系数: PCB建模 器件建模 安装点建模 钻孔建模	2 网格类》 区域建 PCB材料和单注	型: 独自的 摸: 否 元: Layered	>		
*倍频乘系数: PCB建模 号4件建模 安装示速模 钻孔建模 引脚建模	2 网格类3 区域建4 PCB材料和单3 PCB最多材料	型: 独自的 摸: 否 元: Layered 料: 100	>		
* 倍频乘系数: PCB建模 器件建模 安装点建模 钻孔建模 引脚建模 轨边建模	2 网格类组 区域建 PCB材料和单注 PCB最多材 单元阶)	型: 独自的 模: 否 元: Layered 料: 100 欠: 二阶	~	<u> </u>	
* 信频乘系数: PCB建模 器件建模 安装点建模 钻孔建模 引脚建模 轨边建模 键合丝建模	2 网格类3 区域建作 PCB材料和单注 PCB最多材料 单元阶;	型: 独自的 摸: 否 元: Layered 料: 100 次: 二阶 章: 0.5			
* 信频乘系数: PCB建模 号件/建模 安装 示態模 站孔 建模 引脚建模 轨边 建模 键合丝 建模 散 如 品 翻 要 模	2 网格类3 区域建4 PCB材料和单5 PCB最多材料 单元阶3 *最小边长J	型: 独自的 摸: 否 元: Layered 料: 100 欠: 二阶 度: 0.5	* * * * * * * * *		
*倍频乘系数: PCB建模 号件/建模 安装示建模 钻孔建模 引脚建模 轨边建模 镜合丝/建模 散热感動建模 灌封区域建模	2 网格类组 区域建 PCB材料和单注 PCB最多材料 单元阶注 "最小边长J "最大网格大小	型: 独自的 模: 答 元: Layered 料: 100 欠: 二阶 变: 0.5 小: 1	V V V mm V mm V		
* 信频乘系数: PCB建模 器件建模 安装点建模 钻孔建模 引脚建模 轨迹建模 键合丝建模 散热感整模 灌封区域短建模 机械零件建模	2 网格类3 区域建作 PCB材料和单注 PCB最多材料 单元阶 。 "最小边长J *最大网格大·/ *垂直网格大·/	型: 独自的 煤: 否 	× × × mm × mm ×		
*倍频乘系数: PCB建模 号件建模 安装 示態模 站孔建模 引脚建模 划处建模 键合丝处建模 散效器数建模 灌封区 域建模 机械零件处建模	2 网格类4 区域建4 PCB材料和单5 PCB最多材料 单元防3 *最小边长J *最小边长J *最大网格大4 最小网格为4	型: 独自的 模: 否 不: Layered 科: 100 次: 二阶 变: 0.5 小: 1 小: 0 变: 15	v v v mm mm v mm v		

图 7-1 振动确信可靠性度分析属性编辑框

运算成功后,点击查看结果,弹出振动确信可靠度结果,如图 7-2 所示。

器件ID	封装	器件类型	面	材料	重量	焊料	载荷应力	最大位移	封装最大应		封装可靠度(%)	焊料可靠度(%)	器件可靠度(9
1	TP_OBL1_4X0_6	变压器	正面	FERRITE	1.44E-2	SAC305	阶段1-正弦振动	1.8E-5	5.8E-3	2.6E-3	-1.0	100.0	-1.0
1	TP_OBL1_4X0_6	变压器	正面	FERRITE	1.44E-2	SAC305	阶段1-随机振动	1.0E-4	1.8E-2	8.1E-3	-1.0	100.0	-1.0
1	TP_OBL1_4X0_6	变压器	正面	FERRITE	1.44E-2	SAC305	阶段1-冲击振动	1.6E-3	5.4E-1	2.4E-1	-1.0	100.0	-1.0
2	TP OBL1 4X0 6	变压器	正面	FERRITE	1.44E-2	SAC305	阶段1-正弦振动	2.0E-4	1.6E-2	7.1E-3	-1.0	100.0	-1.0
2	TP_OBL1_4X0_6	变压器	正面	FERRITE	1.44E-2	SAC305	阶段1-随机振动	2.4E-3	4.3E-1	1.9E-1	-1.0	100.0	-1.0
12	TP_OBL1_4X0_6	变压器	正面	FERRITE	1.44E-2	SAC305	阶段1-冲击振动	1.4E-2	1.1E0	4.8E-1	-1.0	100.0	-1.0
13	TP_OBL1_4X0_6	变压器	正面	FERRITE	1.44E-2	SAC305	阶段1-正弦振动	9.5E-5	4.7E-2	2.1E-2	-1.0	100.0	-1.0
3	TP_OBL1_4X0_6	变压器	正面	FERRITE	1.44E-2	SAC305	阶段1-随机振动	7.28-4	3.8E-1	1.7E-1	-1.0	100.0	-1.0
3	TP_OBL1_4X0_6	变压器	正面	FERRITE	1.44E-2	SAC305	阶段1-冲击振动	6.5E-3	3.4E0	1.5E0	-1.0	100.0	-1.0
4	TP_OBL1_4X0_6	变压器	正面	FERRITE	1.44E-2	SAC305	阶段1-正弦振动	3.1E-5	1.8E-2	7.8E-3	-1.0	100.0	-1.0
4	TP_OBL1_4X0_6	变压器	正面	FERRITE	1.44E-2	SAC305	阶段1-随机振动	1.45-4	1.4E-1	6.1E-2	-1.0	100.0	-1.0
4	TP_OBL1_4X0_6	变压器	正面	FERRITE	1.44E-2	SAC305	阶段1-冲击振动	2.5E-3	1.3E0	5.8E-1	-1.0	100.0	-1.0
1	R0402	电阻	正面	EPOXYENCAPSULANT	1.86E-3	SAC305	阶段1-正弦振动	1.0E-5	1.9E-3	6.5E-3	100.0	100.0	100.0
11	R0402	电阻	正面	EPOXYENCAPSULANT	1.86E-3	SAC305	阶段1-随机振动	8.0E-5	9.5E-3	3.3E-2	100.0	100.0	100.0
1	R0402	电阻	正面	EPOXYENCAPSULANT	1.86E-3	SAC305	阶段1-冲击振动	9.1E-4	1.7E-1	5.7E-1	100.0	100.0	100.0
2	R0402	电阻	正面	EPOXYENCAPSULANT	1.86E-3	SAC305	阶段1-正弦振动	2.3E-5	5.3E-4	1.8E-3	100.0	100.0	100.0
2	R0402	电阻	正面	EPOXYENCAPSULANT	1.86E-3	SAC305	阶段1-随机振动	3.6E-4	9.1E-3	3.1E-2	100.0	100.0	100.0
2	R0402	电阻	正面	EPOXYENCAPSULANT	1.86E-3	SAC305	阶段1-冲击振动	2.0E-3	3.3E-2	1.1E-1	100.0	100.0	100.0
3	R0402	电阻	正面	EPOXYENCAPSULANT	1.86E-3	SAC305	阶段1-正弦振动	2.7E-5	7.4E-4	2.5E-3	100.0	100.0	100.0
3	R0402	电阻	正面	EPOXYENCAPSULANT	1.86E-3	SAC305	阶段1-随机振动	4.1E-4	9.4E-3	3.2E-2	100.0	100.0	100.0
3	R0402	电阻	正面	EPOXYENCAPSULANT	1.86E-3	SAC305	阶段1-冲击振动	2.4E-3	5.4E-2	1.8E-1	100.0	100.0	100.0
:11	C0402	电容器	正面	EPOXYENCAPSULANT	4.72E-4	SAC305	阶段1-正弦振动	4.0E-5	1.3E-3	4.4E-3	100.0	100.0	100.0
11	C0402	电容器	正面	EPOXYENCAPSULANT	4.72E-4	SAC305	阶段1-随机振动	5.6E-4	1.0E-2	3.5E-2	100.0	100.0	100.0
31	C0402	电容器	正面	EPOXYENCAPSULANT	4.72E-4	SAC305	阶段1-冲击振动	3.8E-3	1.2E-1	4.0E-1	100.0	100.0	100.0
4	R0402	电阻	正面	EPOXYENCAPSULANT	1.86E-3	SAC305	阶段1-正弦振动	4.8E-5	2.4E-3	8.1E-3	100.0	100.0	100.0
4	R0402	电阻	正面	EPOXYENCAPSULANT	1.86E-3	SAC305	阶段1-随机振动	6.6E-4	4.7E-2	1.6E-1	100.0	100.0	100.0
(4	R0402	电阻	正面	EPOXYENCAPSULANT	1.86E-3	SAC305	阶段1-冲击振动	4.0E-3	1.7E-1	5.7E-1	100.0	100.0	100.0
:10	C0805	电容器	正面	EPOXYENCAPSULANT	5.90E-3	SAC305	阶段1-正弦振动	5.4E-5	1.5E-3	5.0E-3	100.0	100.0	100.0
10	C0805	电容器	正面	EPOXYENCAPSULANT	5.90E-3	SAC305	阶段1-随机振动	6.8E-4	3.1E-2	1.1E-1	100.0	100.0	100.0
10	C0805	电容器	正面	EPOXYENCAPSULANT	5.90E-3	SAC305	阶段1-冲击振动	4.1E-3	9.7E-2	3.3E-1	100.0	100.0	100.0
5	R0402	电阻	正面	EPOXYENCAPSULANT	1.86E-3	SAC305	阶段1-正弦振动	4.3E-5	3.1E-3	1.0E-2	100.0	100.0	100.0
5	R0402	电阻	正面	EPOXYENCAPSULANT	1.86E-3	SAC305	阶段1-随机振动	6.2E-4	6.8E-2	2.3E-1	100.0	100.0	100.0
5	R0402	电阻	正面	EPOXYENCAPSULANT	1.86E-3	SAC305	阶段1-冲击振动	3.5E-3	2.4E-1	8.3E-1	100.0	100.0	100.0
13	C0402	电容器	正面	EPOXYENCAPSULANT	4.72E-4	SAC305	阶段1-正弦振动	4.3E-5	2.0E-3	7.0E-3	100.0	100.0	100.0
13	C0402	电容器	正面	EPOXYENCAPSULANT	4.72E-4	SAC305	阶段1-随机振动	6.5E-4	2.8E-2	9.5E-2	100.0	100.0	100.0
12	00400	atta eta BR	The rates	EDOW/ENICADELILANIT	4 705 4	CACODE	RAEGE VertHEICH	2.05.2	1 05 1	6 15 1	100.0	100.0	100.0

图 7-2 振动确信可靠性度摘要

7.2. 热确信可靠度评估

右键单击项目树中的"热应力确信可靠度"树节点,然后从弹出菜单中选择 "编辑属性"或者"运行分析任务"选项,弹出热应力确信可靠度属性对话框, 如图 7-3 所示

LWSIM

明 热应力确信可靠度属	性			×
指定所需的仿真属性。设置	置>>仿真设置菜单选项	远可用于排	皆定所有工程和	电路板组件的有限元仿真
/崖1王。				
温度载荷				
使用器件温升: 是	~	温度应	力 : 只有最高温	~
ID 倍1: □	泪皮丁油			
Max				
仿真属性		52		
温度仿真结果	数: 1	~		
*对流换热系	数: ? 15			
PCB建模	网格类型:	独自的	~	
器件建模	区域建模:	否	~	
安装点建模	PCB材料和单元:	Lavered	~	
日10月12日1日	DCDB-& tixi-	100		
51版印度主体	PCD県大学 小小 不行。	100		
键合线建模	甲元阶次:	= 67	~	
散热器影主模	*最小边长度:	0.5	mm 🗸	
灌封区域建模	*最大网格大小:	1	mm 🗸	
机械零件建模	*垂直网格大小:	0	mm ~	
	最小网格角度:	15	~	
	最小四边形质里:	0.4	~	
		S1		
保存并运行	保存	重置	取消	帮助

图 7-3 热应力确信可靠度分析属性编辑框

运算成功后,点击查看结果,弹出热应力确信可靠度结果,如图 7-4 所示。

蓝威数值(珠海)科技有限公司

器件ID	载荷应力	温度阈值	可靠度(%) ^
R1	温度工况 MAX	70.00	-100.00
R2	温度工况 MAX	70.00	-100.00
R3	温度工况 MAX	70.00	-100.00
C11	温度工况 MAX	70.00	-100.00
R4	温度工况 MAX	70.00	-100.00
C10	温度工况 MAX	70.00	-100.00
R5	温度工况 MAX	70.00	-100.00
C13	温度工况 MAX	70.00	-100.00
R6	温度工况 MAX	70.00	-100.00
C12	温度工况 MAX	70.00	-100.00
R7	温度工况 MAX	70.00	-100.00
C15	温度工况 MAX	70.00	-100.00
R8	温度工况 MAX	70.00	-100.00
C14	温度工况 MAX	70.00	-100.00
л	温度工况 MAX	70.00	-100.00
R9	温度工况 MAX	70.00	-100.00
C17	温度工况 MAX	70.00	-100.00
J2	温度工况 MAX	70.00	-100.00
C16	温度工况 MAX	70.00	-100.00
J3	温度工况 MAX	70.00	-100.00
C19	温度工况 MAX	70.00	-100.00
J4	温度工况 MAX	70.00	-100.00
C18	温度工况 MAX	70.00	-100.00
J5	温度工况 MAX	70.00	-100.00
S1	温度工况 MAX	70.00	-100.00
C20	温度工况 MAX	70.00	-100.00
C22	温度工况 MAX	70.00	-100.00
C21	温度工况 MAX	70.00	-100.00
C24	温度工况 MAX	70.00	-100.00
C23	温度工况 MAX	70.00	-100.00
C26	温度工况 MAX	70.00	-100.00
C25	温度工况 MAX	70.00	-100.00
C28	温度工况 MAX	70.00	-100.00
C27	温度工况 MAX	70.00	-100.00
C1	温度工况 MAX	70.00	-100.00
C2	温度工况 MAX	70.00	-100.00

图 7-4 热应力确信可靠度摘要

8. 报告

在"报告"上点击右键,在菜单里点击"生成报告",软件会自动生成该工程的评估报告,用户可自主选择报告里的主要内容,如图 8-1、8-2 所示。

• 电路板组件报告设置	置 - test odb	×		
指定所有报告属性,然后按 生成报告 按钮为此生成报告电路板.				
*公司:				
*作者:				
报告编号。		ĥ		
化首编 5:				
是否显示器件标签:	否 ~			
章节:	◎ 可靠性评估摘要	•		
	□ 🗹 电路板结果			
	✓ 电路板组件信息			
	✓ 电路板组件可靠性等级			
	✓ 失效的元器件			
	□ 🗹 最严重的组件			
	☑ 最短寿命(焊点热疲劳)			
	☑ 最短寿命(无铅焊点二阶热疲劳)			
	☑ 最短寿命(焊点热疲劳Darveaux)			
	☑ 最短寿命(镀通孔疲劳)			
	☑ 最短寿命(引线及焊盘热疲劳)			
	☑ 最短寿命(断裂寿命)			
	☑ 最短寿命(芯片与基板连接断裂)			
	✓ 最短寿命(芯片连接界面疲劳断裂寿命)			
	☑ 最短寿命(正弦振动)			
	▶ 最短寿命(随机振动)			
	▶ 最大应变(冲击振动)			
	✓ 可靠度最低(热应力确信可靠度)			
	✓ 可靠度最低(振动应力确信可靠度)			
		1		
全部选中 清除所有				
生	成报告 重置 取消			

图 8-1 报告设置

图 8-2 报告