BCS User Guide

Product Version: BCS v1.0

June 2023

比昂芯 BTD тесниогоду

Contents

BCS User Guide Contents Purpose

Audience

Software Requirements

Terms

Overview

1 Instructions

1.1 Software installation

1.1.1 Windows installation process

1.1.2 Linux installation process

1.2 Basic interface introduction

1.2.1 Main interface

1.2.2 Tool bar

1.2.3 Schematic hierarchy

1.2.4 Design display window

1.2.5 Common components bar

1.2.6 Simulation interface

1.2.7 Oscilloscope interface

2 Work flow

2.1 New file & Import file

2.2 Schematic Edit

2.3 Simulation type selection and setting

2.4 Place the probe

2.5 Simulate

2.6 View the content of netlist

2.7 View the results of simulation

3 Schematic diagram

3.1 Tool bar introduction

3.1.1 Start

3.1.1.1 Schematic setup

3.1.1.2 Import

3.1.1.3 Export

3.1.2 Edit

3.1.2.1 Change symbols

3.1.3 View

3.1.4 Place

3.1.4.1 Add symbol

3.1.4.2 Add text

3.1.5 Inspect

3.1.5.1 Electrical rules checker

3.1.5.2 Simulator

3.1.6 Tools

3.1.6.1 Symbol editor

3.2 Shortcut keys

4 Basic symbol

4.1 RLC

4.1.1 Resistor (R)

4.1.2 Inductor

4.1.3 Capacitor

4.2 Transmission line

4.2.1 Characteristic impedance

4.2.2 RLGC

4.3 IBIS-symbol

4.3.1 IBIS setting interface

4.3.2 Simulation setting

4.4 SnP

4.4.1 SnP setting interface

4.4.2 BUS

4.4.3 S-parameter post-processing

4.4.3.1 SPICE Netlist Conversion

4.4.3.2 S-Parameter Smoothing

4.4.3.3 S-Parameter Concatenation

4.4.3.4 ZYQCR Conversion

4.5 Subcircuit model and spice macro model

4.6 Voltage source and current source

4.6.1 DC

4.6.2 AC (Sine)

4.6.3 Pulse

4.6.4 Exponential

4.6.5 Piecewise linear

4.6.7 White noise

4.6.8 Pink noise (1/f)

4.6.9 Burst noise

4.6.10 Random uniform

4.6.11 Random normal

4.6.12 Random exponential

4.6.13 Behavioral

5 Simulation commands & Eye probe

5.1 Simulation commands

5.1.1 TranSim

5.1.2 AcSim

5.1.3 DcSim

5.1.4 ChannelSim

5.1.5 SpSim

5.1.6 Others

5.2 Eye probe

6 BTD-Wave oscilloscope

6.1 Open

6.1.1 Open files

6.2 Display and measurement

6.2.1 Display

6.2.1.1 XY-Plot

6.2.1.2 Bar view

6.2.1.3 Smith chart

6.2.2 Measurement

6.3 Eye diagram

6.3.1 Measurement and mask

6.3.2 Other graphics

Appendix: Simulation Command Syntax

Purpose

BCS 是深圳比昂芯科技有限公司研发的面向高速信号传输的信号/电源完整性分析 软件。主要用于进行电路图设计,常用电路仿真(DC/AC/Tran/Channel 等), IBIS 模型提取,网表转化,模型导入等 SI/PI 协同仿真行为,以及相应仿真结果 (眼图/浴缸图/contour 等)的实时显示。

Audience

该文档适用于使用 BCS 来进行高速信号传输中信号/电源完整性仿真分析的 IC 设计人员,同样适用于想要了解高速信号传输中信号/电源完整性仿真过程的用户。

Software Requirements

软件推荐的运行环境为:

Intel(R) Core(TM) 2.67GHz

2G 内存

10G 硬盘

及以上配置硬件环境

软件运行操作系统:

win7 及以上版本

Linux

Terms

 $\langle\!\!\langle \rangle\!\!\rangle$

Overview

BCS 是深圳比昂芯科技有限公司研发的面向高速信号传输的信号/电源完整性分析 软件。具有以下优点:

采用基于 TX、Channel、RX 三大模块的 I/O 系统级设计。在 TX 端可实现基于 SPICE 的 IBIS 模型提取、多种调制信号生成器(PAM/PWM/PPM 等)的模拟、 PRBS 信号生成(用于眼图)以及拥有便利的参数设置界面。Channel 端同样支持 传输线/过孔模型、S 参数模型,支持 AC, DC, 瞬态仿真,通道仿真、噪声和射频仿 真,S 参数模型图形化导入及查看以及 SI/PI 协同仿真等功能。RX 端则支持晶体 管级和行为级 RX 模型,拥有丰富的波形显示功能(眼图,浴缸图, contour 等) 与基于机器学习的快速输出功能。

以电路图编辑工具为基础,集成 BTD-Sim 仿真工具和 BTD-Wave 波形显示工具,设计实现了面向高速信号传输的信号/电源完整性分析工具。支持多层次显示,完整实现了实时编辑电路图、生成网表、仿真并显示结果一体化的流程。

软件的 work flow 如下图:

1 Instructions

本章内容主要介绍了 BCS 的安装方法以及工作界面。

1.1 Software installation

1.1.1 Windows installation process

 $\langle\!\!\langle \rangle\!\!\rangle$

1.1.2 Linux installation process

 $\langle\!\!\langle \rangle\!\!\rangle$

1.2 Basic interface introduction

1.2.1 Main interface

BCS 主界面由工具栏、电路图层级栏、设计显示窗与常用元件栏 4 个部分组成, 承担工程项目创建管理、电路图设计等主要交互工作。

	* [] [] [] [] [] [] [] [] [] [] [] [] []
	02 03 03 03 03 03 03 03 03

1.2.2 Tool bar

工具栏内包含一系列选项,针对工程文件、编辑操作、窗口视图、电路搭建与数据仿真提供了相应功能。

1.2.3 Schematic hierarchy

电路图层级栏内显示了电路图的层级结构,可进行电路图层级编辑与管理,同时可以在 View 标签下的 Hierarchy Navigator 选项中实时开关层级栏。

1.2.4 Design display window

设计显示窗实现电路图的实时编辑与显示功能。

+	
	+

1.2.5 Common components bar

常用元件栏中放置了常用的电路元件及仿真命令,方便搭建电路图。

*7		
		- 19
	+	

1.2.6 Simulation interface

在工具栏 Inspect 标签下的 Simulator 选项中打开仿真界面。仿真界面允许用户进行仿真命令与信号的实时添加显示及探针,调试等实时编辑功能。

ot gege 1)				
	D Dessel - Las Indata References the Desterminent of the Control of the Control	- A	а х С	
	-	Grien		
	17		_+	

1.2.7 Oscilloscope interface

BCS 集成 BTD-Wave 实现对仿真波形的输出与实时操作。

2 Work flow

本章对 BCS 的工作流程进行简要的描述。

2.1 New file & Import file

选中工具栏 Start 标签(主要功能为项目创建及保存)下的 New 或 Open 选项, 实现项目的创建。完成项目的创建后,若有需要导入的电路图或者网表等类型的文件,可选中 Import 选项完成文件的导入。

form a ment			
denne de page 1			
	The Start as	and the second second	
	48-1 88.00		
	Alana an and an	He contraction and the second	
	the second se		
	170		
	Eve r		
	0.00		
	Electron		
	Bestern And Bestern Wilden councils starset for 199,40		
	4.00000	(1993) - 44	
0 25 4 1 2 5 5 0	0 0		
TT B Court Selected			
16 mar	N/ 10		
10 serve			

2.2 Schematic Edit

在右侧常用元件栏中使用拖拽或左键单击在画板上放置元件,其他更多类型的元件可选中 Place 标签下的 Add Symbol 选项,在元件库中进行查找与选用。详细内容 见第4章:基础器件。

在画布中放置元件后,可双击或右键选中元件,打开控件编辑窗口来修改参数。

Specif Samesia Specif	971				
Oraclerit March/Marcing 0 1 1 0 Statution 0 0 1 0 0 Statution 0 0 0 0 0		Senter Francisco Denne d' Albania (16 Juligenese Nove Nove Nove Nove Nove Nove Nove Nov		- 0 *	
No. UB-window too below States too too too too too too too too too to		Control Management Baylow Majabase + T A T I Second			
alway felt Sociality (1912-1912) (1974) Benefits Hadd 198 Cover		The Constant of the Proget	Distant free stratue Distant free bit of establish Distant free loant Dist of passing	Deep Letter. Hit Letter, Letter.	
		sine in heats (2018) (201	(freedor)	tati (1911) (part)	

通过主界面上方的工具栏 Place 选取连线 Add Wire 功能,单击端口开始连线,在 末端端口处双击结束连线,在连线中以单击的方式控制转折点。

2.3 Simulation type selection and setting

本软件目前支持的仿真类型包括:

•静态工作点(直流偏置点)分析

- DC 分析
- AC 分析
- •瞬态分析
- •S 参数分析
- ChannelSim

需要放置相应的仿真器件并且设置参数,详细内容在各章节中会逐一介绍。

2.4 Place the probe

用户可以在原理图中放置探针,以便查看所需要的仿真结果。详细内容见 5.2:探针

2.5 Simulate

完成电路图的设计,在需要的探测点添加探针及相应的仿真命令,配置好仿真参数 后,可点击主界面上方工具栏的 **Inspect** 标签中的 **Simulator** 按钮打开仿真界 面,点击 **Run/Stop Simulation** 按钮开始仿真。

2.6 View the content of netlist

软件仿真过程中,会生成 spice 网表,点击仿真界面 Simulation 标签下的 Show SPICE Netlist 选项即可导出仿真对应的网表文件。

🚆 хххх.sp	×	+	-		×
文件 编辑 查看					3
<pre>* BTD schematic .option post=2 .include "C:/Users/q .include "C:/Users/q *********** Models .modelSnp1 SP N=2 +DATAFILE="C:\Users\ .probe v(unconnected</pre>	iang/AppData/L iang/AppData/L ********** SPACING=POI V qiang\Desktop\ Eye_Probe1-P	ocal/BTDIO/7.9 ocal/BTDIO/7.9 ALTYPE=CARTESI Example\C0201X ad1_)	9/ibis/U1.cache" 9/ibis/U2.cache" AN 5R104M6R3NTA.S2P"		
*********** Compone XU2 GND NetSnp1-po Snp1 NetSnp1-port_ XU1 GND NetSnp1-po	nts ********** rt_1_ U2.Soc_d 1_ NetSnp1-p rt_2_ U1.Soc_d	** ie ort_2_ 0 fqmod ie	el=Snp1 numpole	s=80	
************ Directi .tran 0.1ns 20ns .end	ves *********	**			
行1,列1	1009	6 Windows	(CRLF) UTF-	8	

2.7 View the results of simulation

仿真结束后将生成.out 文件,软件会自动打开 BTD-Wave 波形显示器,用户可以 在波形显示器中查看相应内容,也可以对仿真结果进行测量和计算等操作。

3 Schematic diagram

本章内容主要介绍了 BCS 中的基本按键功能,原理图的建立,参数设置等内容。

3.1 Tool bar introduction

对于一些通用的功能,文档将简要说明甚至跳过,主要介绍 BCS 独有的功能。

3.1.1 Start

3.1.1.1 Schematic setup

在 General 选项中设置电路图格式相关的内容,如元件标注,文本格式,元件图形格式,连线格式等。

Schematic Setup				
⊡-General Formatting Field Name Templates	Annotations Symbol unit notation	- A	•	☐ Inter-sheet References ☐ Show inter-sheet references
Flectrical Rules Electrical Rules Violation Severity Pin Conflicts Map Project Net Classes Bus Alias Definitions	Text Default text size: Label offset ratio: Global label margin:	50 15 37.5	mils % %	Show own page reference Standard (1,2,3) Abbreviated (13) Prefix: Suffix:
└─ Text Variables	Symbols Default line width: 6 Pin symbol size: 2	5	mils mils	Dashed Lines Dash length: 12 Gap length: 3
	Connections Junction dot size: De	əfault	•	Dash and dot lengths are ratios of the line width.
Reset to Defaults Impo	rt Settings from Anothe	r Project)_;	OK Cancel

在 Electrical Rules 选项中设置 ERC 的标准。

Schematic Setup					×
⊡ General	Connections				-
Field Name Templates	Pin not connected:	• Error	C Warning	C Ignore	
Electrical Rules	Input pin not driven by any Output pins:	• Error	C Warning	C Ignore	
- Violation Severity	Input Power pin not driven by any Output Power pins:	Error	C Warning	C Ignore	
Pin Conflicts Map	A pin with a "no connection" flag is connected:	C Error	Warning	C Ignore	
⊡ Project	Unconnected "no connection" flag:	C Error	Warning	C Ignore	
Net Classes	Label not connected to anything:	• Error	C Warning	C Ignore	
Text Variables	Global label not connected anywhere else in the schematic:	C Error	Warning	C Ignore	
	Wires not connected to anything:	• Error	C Warning	C Ignore	
	Bus Entry needed:	• Error	C Warning	C Ignore	
	Symbol pin or wire end off grid:	C Error	Warning	C Ignore	
	Conflicts				
	Duplicate reference designators:	• Error	C Warning	C Ignore	
	Units of same symbol have different values:	Error	C Warning	C Ignore	
	Different footprint assigned in another unit of the symbol:	• Error	C Warning	C Ignore	
	Different net assigned to a shared pin in another unit of the symbol:	• Error	C Warning	C Ignore	
	Duplicate sheet names within a given sheet:	• Error	C Warning	C Ignore	
	Mismatch between hierarchical labels and sheet pins:	• Error	C Warning	C Ignore	
	More than one name given to this bus or net:	C Error	Warning	C Ignore	
	Conflict between bus alias definitions across schematic sheets:	• Error	C Warning	C Ignore	
Reset to Defaults Impo	ort Settings from Another Project		-	DK Canc	el

3.1.1.2 Import

Import 提供了导入多种类型文件的功能。

点击相应的文件类型并选中导入。

import Schemat	c								×
	<mark>二</mark> - 此	电脑 ▼ Windows (C:)	▼ 用户 ▼ 44257 ▼ xs	chematic ▼ test_1_p	j		-	在 test_1_prj 中搜索	•
组织 👻 新建文	牛 夹							≣ ▾ 🔳	0
业 下载	*-	名称 🔺		修改日期	类型	大小			
🔤 文档	*	📔 11.sch		2023/7/5 14:34	SCH 文件	1 KB			
🔀 图片	*								
🕖 音乐	*								
🔁 视频	*								
늘 屏幕截图									
🚞 ABS软蕃材	RF								
💼 RF软蕃材料									
📒 比昂芯logo									
● WPS云盘									
💭 此电脑									
🟪 Windows	(C:)								
— 新加卷 (D	:)								
🎾 网络									
	•								
	文件名((N): 11.sch					•	All supported formats (*.Sch	•
								打开(O) 取消	

软件将显示对应文件的电路图。

3.1.1.3 Export

Export 提供了将电路图导出为多种类型文件的功能。

导出方式同上。

3.1.2 Edit

3.1.2.1 Change symbols

Change Symbols	×
 Change symbols matching reference designator: Change symbols matching value: Change symbols matching library identifier: 	
New library identifier:	
	<u>II</u>
Update Fields Reference Value Footprint Datasheet Select All Select None Output Messages	Update Options Remove fields if not in new symbol Reset fields if empty in new symbol ✓ Update field text ✓ Update field visibilities ✓ Update field sizes and styles ✓ Update field positions ✓ Update symbol attributes
Show: 🗆 All 🛛 🔽 Errors 🕕 🔽 Warnings	O
	Change Close

3.1.3 View

对项目工程进行层级管理。

.... 8 mm Symbol Library Hierarchy Navigate Navigate Navigate Previous Next Browser Navigator Back Up Forward Sheet Sheet Show Grid &Units Full-Window Up Forward Sheet Sheet Grid Properties... Crosshairs • option View show

3.1.4 Place

设计电路图所需要的元件及标注。

3.1.4.1 Add symbol

点击 Add symbol 按钮即可进入 BCS 自带的元件库,用户可以在此搜索取用需要的 电路元件。

Q+ IBIS	8	
tem	Description	
Simulation SPICE		
IBIS DEVICE	Device mod	
IBIS_DEVICE_DIFF	Device mod	
IBIS DRIVER	Driver mod	Jut 2 11 U?
IBIS DRIVER DIFF	Driver mod	
		be the second se
		3 3 0
		<u>A</u>
		No default footprint
	•	
IDIC DEVICE		
Device model for IBIS files. Pin 3 can be	used	
to monitor the die potential Keywords: Simulation IBIS		No footprint specified
Sywords. Simulation ibis		
Reference 1122		
Reference Urr		
Datasheet https://ibis.org		
This Dis	* [
1010_110		

3.1.4.2 Add text

点击 Add text 按钮可以为电路图添加文字,还可以通过这里手动输入仿真命令,相关语法详见附录。

Text Prope	rties									×
Text:	. tran 201	ns O. 1ns								
	1								<u>Syntax</u>	help
Font:	Default F	Font		•	в /	EE	T	-		
					10		1	4		
lext size:	1.27	mm	Color:	883						
Text size:	1.27	mm	Color:	<u>883</u>						-
Text size:	1.27	mm	Color:			2	OI		Can	• cel
Text size:	1.27	mm	Color:		_		01	<u> </u>	Can	▼ cel
Text size:	1.27	mm	Color:				0	<	Can	▼ cel
Text size:	1.27	mm	Color:				01		Can	• cel
Text size:	1.27	mm	Color:				01		Can	▼ cel
Text size: □Link:	1.27	mm	Color:		化合金 化合金 化合金	2 1 2 1 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0	01		Can	r el
Text sıze: □ Link:	1.27	mm	Color:		2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.		01		Can	cel

3.1.5 Inspect

3.1.5.1 Electrical rules checker

该功能可自动检查电路图中的错误,并按照标准显示在窗口中。

3.1.5.2 Simulator

该按钮可调出仿真启动界面,界面将列出仿真计算出的信号名称,以及调整仿真命 令的参数。

III * [Unsaved] — Spice Simulator		<u> </u>		×
File View Simulation Preferences Help				
🖺 🖳 🚱 🕨 📒 🕀 🔾 🍳 🖊 🖊 🛄				
Plot1 - TRAN X	Q Filter			8
	Signal		Plot	Color_
Voltage Current	V(NetSnp1-port_1_)			
	V(NetSnp1-port_2_)			
	I(Snp1)			
	I(XU1:GND)			
	I(XU1:IN/OUT)			-
	1			•
	Cursor Signal		Т	ime
	Measurement			•
7/				
11me				
2				
	<u>.</u>			
	3			
	2			

3.1.6 Tools

Symbo Editor	Q I Update Symbols from Library	Edit Symbol Fields	C Edit Symbol Library Links	R77 R42 Annotate Schematic	BTDWave	Simulate	Generate Ibis	© S Parameter gadget
			Т	ools				

3.1.6.1 Symbol editor

软件提供用户自定义元件的功能,用户可以新建元件或从外部导入新元件,自定义 元件的符号,并加入元件库中。

▷ [no symbol loaded] — Symbol Editor																						- <u></u>)	×
Start View Place	Inspect	Prefe	erences	н	elp																			
Inport Export Symbol			••••••••••••••••••••••••••••••••••••••				ک ۲	Pin able	Set U	? Init Di Name	splay 	Upda Fi	€ te Syn ields	nbol	Sym Proper	bol ties								
File Import/Export			Opt	tion								Edit												
Libraries Q+ Filter	T .													с (с 8										
Item																								
	1																							
+ 74xGxx																								
+ 74xx																								
T4xx_IEEE																								
🛨 Amplifier_Audio	8.5													8 S										8
H Amplifier_Buffer	1.1													6 6										
H Amplifier_Current												~~~	-							_		 	 -	
+ Amplifier_Difference	3.2																							
+ Amplifier_Instrumentation	$\sim -\infty$													8 G										
Amplifier_Operational	1.2 2.																							
H Amplifier_Video						.																		
+ Analog																								
H Analog_ADC																								
Analog_DAC	1.2.2					1																		1
Analog_switch																								2
Z 2.99 X -22.8600	Y 12.7000		dx -22	.8600	dy 12.7	'000 dis	t 26.1	509		gr	id 2.54	400				m	nm							

3.2 Shortcut keys

 $\langle\!\!\langle \rangle\!\!\rangle$

4 Basic symbol

本章主要介绍一些信号完整性分析的常用器件。

4.1 RLC

4.1.1 *Resistor* (*R*)

在右侧常用器件栏或元件库中找到该器件。

器件图标:

Name									
- territe	Value		Show	Show Name	H Align	V Align	Italic	Bold	
Reference	R1				Center	Center			
Value	R				Center	Center			
Footprint					Center	Center			
Datasheet	~				Center	Center			
Inite I		Exclude fr	om sin	nulation	Upd	late Symbol	from Lib	orary	
Alternat	e symbol (De Morgan)	Exclude fr	om bil	l of materials		Change S	ymbol		
ander D		Exclude fr	om bo	ard	Edit Symbol				
		I Do not po	pulate						
+ ↑ Seneral	↓ <u> </u>	Attributes	om sin	nulation	Upd	late Symbol	from Lib	ora	

双击或右键单击选中属性(快捷键 E)打开电阻(R)编辑界面。

点击下方 Simulation Model 对电阻(R)的类型与参数进行编辑。

SPICE m	odel fron	n file (*.lib, *.sub or *.ibs)			
File:					B
Model:					2
Built-in S	PICE mo	del			
Device:	Resistor)			
Type:	Ideal				
	Ideal				
arameter	Potentio Behavio	meter ral			16
Paramete	er	Value	 Unit	Defa	Туре
Resista	ance (r)		Ω		Float

BCS 提供了如下计量单位:

- 1. T = 1e12
- 2. G = 1e9
- 3. MEG = 1e6
- 4. K = 1e3
- 5. m = 1e-3
- 6. u = 1e-6
- 7. n = 1e-9
- 8. p = 1e-12

9. f = 1e -15

类型:理想电阻(Ideal)

参数: Resistance (r) 电阻值

Parameter	Value	Unit	Defa	Туре
Resistance (r)	50	Ω		Float

类型:滑动变阻器 (Potentiometer)

参数: Resistance (r) 电阻值

Wiper position (pos) 变阻片位置

Parameters Code

Parameter	Value	Unit	Defa	Туре
Resistance (r)		Ω		String
Wiper position (pos)			0.5	Float

类型: 自定义电阻 (Behavioral)

参数: Expression for resistance (r) 电阻表达式

Parameter	Value	Unit	Defa	Туре
Expression for resistance (r)		Ω		String

4.1.2 Inductor

器件图标:

10.0				1									1					
6.03				\oplus									Ξ					
231				(\overline{a})				1	92				$\overline{\mathbb{C}}$					
				0				١.	- A				0					
				ੁੱ		IN	D	U	CI	TC	R		ੁੱ					
876	0	02	5	<u>_</u>	1	-		-	5		-		2	11	V	${\mathcal V}$	(2)	Ŷ
22				G	1		Y		Υ.,	Y		7	Ð					
				-									-					
67.9				-									Ξ					
101				(\pm)									Ξ					
6.6.8				\equiv														
231				-									÷					
10.00													-					

按照同上方法设置类型与参数。

Built-in S	SPICE model				
Device:	Inductor				-
Type:	Mutual				•
	Ideal				_
Parameter	Mutual Behavioral				
	Interconnect A data was to an address the second	Value	Unit	Defa	Type
Paramete	er	Talac			
Paramete Induct	er tor 1 (l1)	10.00			String
Paramete Induct Induct	er :or 1 (l1) :or 2 (l2)				String String

类型:理想电感(Ideal)

参数: Inductance (1) 电感值

Parameter	Value	Unit	Defa	Туре
Inductance (l)		Н		Float

- 类型: 互感 (Mutual)
- 参数: Inductor 1 (l1) 电感值 1
- Inductor 2(l2) 电感值 2
- Coupling coefficient (k) 耦合系数

arameter	Value	Unit	Defa	Туре
Inductor 1 (I1)				String
Inductor 2 (l2)				String
Coupling coefficient (k)				Float

类型: 自定义电感 (Behavioral)

参数: Expression for inductance (1) 电感表达式

Parameter	Value	Unit	Defa	Туре
Expression for inductance (I)	INDUCTOR	н		String

4.1.3 Capacitor

器件图标:

按照同上方法设置类型与参数。

类型分为理想电容(Ideal)与自定义电容(Behavioral),详细同上不再介绍。

4.2 Transmission line

在元件库中搜索 TLINE 找到传输线模型。 器件图标:

按照同上方法设置类型与参数。

Model Pin Assignments SPICE model from file (*.lib, *.sub File: Model:	or *.ibs)			
Built-in SPICE model				
Device: Transmission Line				-
Type: Characteristic impedance	e			-
Characteristic impedance				
Parameter RLGC	222			
Parameter	Value	Unit	Defa	Туре
Characteristic impedance (z0)		Ω		Float
Transmission delay (td)		s		Float
	A 111			

BCS 将多种传输线模型提取归纳为特征阻抗(Characteristic impedance)与等效电路(RLGC)两种仿真模型参与仿真分析。

4.2.1 Characteristic impedance

使用特征阻抗(Characteristic impedance)与传输延时(Transmission delay)来 表征传输线模型。

Parameter	Value	Unit	Defa	Type
Characteristic impedance (z0)		Ω		Float
Transmission delay (td)		s		Float

4.2.2 RLGC

使用电阻(R)、电感(L)、电导(G)、电容(C)等效网络来表征传输线模型。

arameter	Value	Unit	Defa	Туре
Length (len)		m		Float
Resistance per length (r)		Ω/m	0	Float
Inductance per length (l)		H/m	0	Float
Conductance per length (g)		1/(Ω m)	0	Float
Capacitance per length (c)		F/m	0	Float

4.3 IBIS-symbol

IBIS 模型元件分为 TX (发射端) 和 RX (接收端) 两个部分。 器件图标:

4.3.1 IBIS setting interface

	value	S	how	Show Name	H Align	V Align	Italic	Bold	-
Reference	U2		~		Center	Center			
Value	IBIS_DRIVER	-	2		Center	Center			
Footprint					Center	Center			
Datasheet	https://ibis.org				Center	Center			_
Sim_Name					Center	Center			
Sim_Library	6				Center	Center			
Ibis_Pin					Center	Center			-
General Jnit:	(combal (De Margan)	Attributes -	from	simulation		Jpdate Syml Chang	bol from 1e Symbo	Library	
General Jnit:	e symbol (De Morgan)	Attributes - Exclude Exclude Exclude	from from from popul	simulation bill of material board ate	s	Jpdate Syml Chang Edit	bol from le Symbo Symbol	Library I	

点击下方 Simulation Model 对参数进行编辑。

1	ssignments				
SPICE mo	del from file (*.lib, *.sub or *.ib	bs)			
File:					
Model:					•
Built-in SF	ICE model				
Device:					*
Type:					¥
Parame	Value		Unit	Defa	Туре

在 Simulation Model Editor 页面,有 SPICE model from file 和 Built-in SPICE model 两种配置模式。前者支持从.lib,.sub 和.ibs 类型的文件中读取 ibis 模型,后者则从已有的 SPICE 模型中选择来配置元件。

在这里介绍从文件中读取 ibis 模型的方式。点击 图标,进入文件库中进行选择。

Browse Models							×
OO ↑ □ •	桌面 ▼ Example ▼ ibs				• •	在 ibs 中搜索	2
组织 ▼ 新建文件夹							≣ • 🔳 🕜
合 主文件夹 ▲	名称 🔺	修改日期	类型	大小			
📥 OneDrive - Per	SOC_51_v1_0-0.1e-9-out.ibs	2023/7/13 10:10	IBS 文件	47 KB			
	SOC_51_v1_0-0.2e-9-in+out.ibs	2023/7/13 10:10	IBS 文件	46 KB			
🛄 桌面 🔹 🖈	SOC_51_v1_0-chen-1e-14.ibs	2023/7/13 10:10	IBS 文件	117 KB			
业 下载 ★	SOC_51_v1_0-wl-origin-L.ibs	2023/7/13 10:10	IBS 文件	47 KB			
🔤 文档 🔹 🖈							
🚬 圏片 🔹 🖈							
🕑 音乐 🔹 🖈							
🚺 视频 🛷							
📒 屏幕截图							
Carter ABS软著材料							
<mark>こ</mark> 比昂芯logo							
🚞 Example]						
] 						
文件	名(N): SOC_51_v1_0-0.2e-9-in+out.ibs				-	All files (*.*)	•
						打开(0)	取消

选择好文件后,如下图:

		p\Example\ibs\!	SOC_51_v1_0	-0.2e <mark>-9-in</mark>	+out.ibs	
Component	: Soc_die					
Pin:	AK26 - EMA1					
Model:	Model: Ipddr3_dq_drv40					
Type: PRI	BS driver					
Type: PRI Parameters C Parameter	BS driver	Value	Unit	Defa	Туре	-
Type: PRI Parameters C Parameter Power sup	BS driver	Value	Unit	Defa	Type String	
Type: PR arameters C Parameter Power sup Parasitic p	BS driver Code	Value typ typ	Unit	Defa typ typ	Type String String	

软件将读取所选的 ibis 模型内容,用户只需要选择相应的**元件、管脚、模型**与 **buffer 类型**即可。

相关选项:

- Component: 元件名称, 由软件从 ibis 模型中读取。
- Pin: 管脚名称, 由软件从 ibis 模型中读取。
- Model: 对应管脚的模型名称,由软件从 ibis 模型中读取。

• **Type**: buffer 的类型, RX 选择 **Device**, TX 则根据配置激励的类型进行进一步的选择与参数配置。

4.3.2 Simulation setting

对于TX类型的IBIS,用户需要设置激励才可以正确使用,软件提供了多种方式进行设置。

从 ibis 模型中读取的参数有:

Parameter		Value	Unit	Defa	Туре	
Power supply (vcc)		typ		typ	String	
Parasitic pin resistance	e (rpin)	typ		typ typ	String	
Parasitic pin inductanc	e (Ipin)	typ			String	
Parasitic pin capacitan	ce (cpin)	typ		typ	String	
参数	描述	述				
Power supply (vcc)	原,文件读取					
Parasitic pin resistance (r	pin) 引用	脚寄生电阻, 文 [,]	件读取			
Parasitic pin inductance (lpin) 引用	脚寄生电感,文 [,]	件读取			
Parasitic pin capacitance	(cpin) 引用	引脚寄生电容, 文件读取				
可供调整的参数有:						
• Type : TX(发射端)激	励的类型					
DC driver Rectangular wave drive PRBS driver PAM4 driver	r					
激励类型	描述					
DC driver	直流激励					
Rectangular wave driver	矩形波激	励				
PRBS driver	伪随机比约	持序列激励				
PAM4 driver	四电平脉	冲幅度调制激励				

• Parameters: TX(发射端)激励的自定义参数

Parameter	Value	Unit	Defa	Туре
DC Value (dc)	hi-Z		hi-Z	String
ON time (ton)		s		Float
OFF time (toff)		s		Float

Delay (td)		s	0	Float
Number of cycles	(n)		1	Int
Bitrate (f0)		Hz		Float
参数	描述			
DC Value (dc)	直流信号, 直流值, 用户设定			
ON time (ton)	方波,导通时间,用户设定			
OFF time (toff)	方波,关断时间,用户设定			
Delay (td)	延迟时间,用户设定			
Number of cycles (n)	方波,循环个数,用户设定			
Bitrate (f0)	比特率,用户设定			
Number of bits (n)	比特数,用户设定			
Rise time (risetime)	上升时间,用户设定			
Fall time (falltime)	下降时间,用户设定			
High voltage (vhigh)	高电平,用户设定			
Low voltage (vlow)	低电平,用户设定			

用例 ibis 文件如下:

Soc	_51_v1_0-0.2e-9-in+c	out.ibs ×	+				_		×
文件 编	辑 查看								ණ
 ******* [IBIS Ve [File na [File Re [Date] [Source]	r] 5.1 me] SOC_51_ v] 1.0 10/08/2 File ge	<pre>************ v1_0.ibs 017 nerated by S</pre>	:*************************************	******	******	****			
[Notes]	RLC exc 1-die,1	tracted from 2.6mmx11.4mm	Copper Pillar , fcBGA-736	Bump to so	lder bal	1.			
[Disclai	mer] THESE I SOC IS CAUSE T WITHOUT	THESE IBIS MODELS ARE PROVIDED "AS IS" WITH NO WARRANTY AND SOC IS NOT RESPONSIBLE FOR ANY PROBLEMS THIS MODEL MAY CAUSE TO THE CUSTOMERS. THESE MODELS ARE SUBJECT TO CHANGE WITHOUT ANY NOTICE.							
[Copyrig	ht] Copyrig	ht 2016. SOC	All rights res	served					
******	*****	**********	*****	********	******	*****			
******	***********	Component:	SUC	********	*******	*****			
[Compone	nt] Soc_die								
[Manufac	turer] SOC Die								
[Package]								
1	typ	mi	.n <mark>m</mark> a	ax					
R_pkg	0.226	0.079	0664 0.	.4301					
L_pkg	2.879e-9	9.514e	-10 5.20	03e-9					
C_pkg	3.707e-13	1.1916	9.12	3e-13					
 [Pin] AK26 AL25 J28	Signal_name EMA1 EMA2 AVDD12 AFE	model_n lpd lpd 1 POWER	ame R_pin dr3_dq_drv40 dr3_dq_input 5.1006	L 0.30069 0.30692 2-02 4.31	_pin 4e-09	C_pin 0.2e-9 0.2e-9 5.000e-13	1e-14 1e-14		
T24	AVSS18 CSI	GND	5.1000	e-02 4.31	4e-09	5.000e-13			
 ******* [Model] Model_ty Polarity Enable C_comp [Tempera	**************************************	************** ************* 0 ing h 1e-14 25.000	Mode: ************************************	*********** 1 1pddr3_dq *********	******** _drv40 ********	*****			
[Voltage	Range]	1.200	1.140		1.320				
[C Comp	Corner]								
IC comp	pullup 0.174	D	0.176p	0.173p					
行1,列1				100%	Unix (LF)		UTF-8	6	

4.4 SnP

器件图标:

4.4.1 SnP setting interface

双击进入编辑界面。

Name	Value	S	how	Show Name	H Align	V Align	Italic	Bold	-
Reference	Snp2		~		Center	Center			
Value	~	1	~		Center	Center			
Footprint					Center	Center			
Datasheet					Center	Center			
Sim.Device	S				Center	Center			_
Sim.Type	S				Center	Center			
General Unit:	_	Attributes	from	simulation		Jpdate Syml	ool from	Library.	
Alternate	e symbol (De Morgan)	Exclude	from	bill of material	s	Chang	e Symbo	ol	
Angle: 0	-	Exclude	from popul	board ate		Edit	Symbol		
Mirror:	lot mirrored 🔹					Char	nge Sn <mark>p</mark>		
Mirror:	lot mirrored 🗾					Char	ige Snp		

点击下方 Change Snp 对参数进行编辑。

Port Location				
1 2 3 4 5 6 7 8	1 5 2 6 3 7 4 8	1 8 2 7 3 6 4 5	1 3 2 4 5 7 6 8	8 7 1 6 2 5 3 4
Port Spacing:	1 ▼ Selected: Left Designation	Side	Select All	Unselect All*

	44257\Desktop\Examp	e\U-120T.S4P		Browse
Port Location				
1 2 3 4 5 6 7 8	1 5 2 6 3 7 4 8	1 8 2 7 3 6 4 5	1 3 2 4 5 7 6 8	8 7 1 6 2 5 3 4
Port Spacing: No.	1 ▼ Selected: I Designation	eft 💽 Show	Select All Visible	Unselect All*
1	port_1	Left	Show	
2	port_2	Right	Show	
2	port_3	Left	Show	
3	19	Right	Show	
3	port_4	1.00%		

点击 Browse 根据文件所在路径进行选择。

选择文件后用户可以对 S 参数的管脚进行编辑,软件在 Port Location 处提供了 5 种默认的模型,用户可以直接使用,如下图:

-Port Location -

12	1 5	1 8	1 3	87
3 4	2 6	2 7	2 4	1 6
5 6	3 7	3 6	5 7	2 5
7 8	4 8	4 5	6 8	34

选择软件提供的默认模型后,软件会对S参数的管脚自动进行分配,用户也可以通过 Side 进行简单的修改。

No.	Designation	Side	Visible	Custom Designation
1	port_1	Left	Show	
2	port_2	Left	Show	
3	port_3	Left	Show	
4	port_4	Left	Show	

对于管脚数量较多的 S 参数,某些场景的仿真并不需要全部使用,那么用户可以通过 Visible 来控制,只在原理图中显示需要使用的管脚。

No.	Designation	Side	Visible	Custom Designation
1	port_1	Left	Hide	
2	port_2	Right	Hide	
3	port_3	Left	Hide	
4	port_4	Right	Hide	

•Port Spacing: 如果用户觉得 S 参数的管脚间距不合适,可以通过 Port Spacing 来调节。

•Custom Designation: 大部分 S 参数文件内部对每个管脚都定义了名称,软件会在原理图上显示文件内部定义的名称,如果觉得这个名称太长,或者不需要显示,用户可以在 Custom Designation 处定义的新名称。

Custor	n De	signati	ion

4.4.2 BUS

软件还提供了总线功能(BUS),选择 BUS,出现如下编辑界面:

Param	eter Imp	orting			>
File	Bus]			
			Apply	OK	Cancel

4.4.3 S-parameter post-processing

针对 S 参数文件,软件还提供了多种功能进行后处理。

点击 Tools 工具栏中的 S Parameter gadget 选项,弹出下面窗口。

4.4.3.1 SPICE Netlist Conversion

SPICE Netlist Conversion 功能可以将.snp 类型的 S 参数文件转化为由 RLC 电路 组成的等效子电路网表文件.mod。

SPICE Netlist Conversion	×
Topology: Series Numpoles: 5	
SP Input File:	Open
RLC Output File: tmp	Run

点击 **Open** 根据文件路径选择需要转换的 S 参数文件,并在 **RLC Output File** 栏中 填入输出.**mod** 文件的名称,点击 **Run** 开始转换,结果将储存在 **workspace** 文件 夹的对应工程文件中。

可调参数:

•Topology: 电路拓扑结构,提供串联与并联两种结构。

Topology:	Series 💌
	Series
SP Input File:	Parallel

•Numpoles: 阶数,可选择 5~99 的整数,默认为 5。

转换时,软件将首先生成中间网表文件 Netlist_RLC.sp。

View		×
File Name:	D:\BTD-Abs\Netlist_RLC.sp	Open
*Generated f *simulator la	from BTD-RF for BTDSIM, 2023-07-27 15:27:20 ng=s <mark>pice</mark>	<u>.</u>
port1 P1 0 p port2 P2 0 p	ort=1 z0=50 ort=2 z0=50	
Scap p1 p2 (+topology= +sp2rlc=yes	0 fqmodel=sfqmodel numpoles=5 series rlc_outfile="C0201X5R104M6R3NTA.mod"	
.MODEL sfqr +DATAFILE=	model SP N=2 SPACING=POI VALTYPE=CARTESIAN "C0201X5R104M6R3NTA.S2P"	
.END		
		<u> </u>

随后 BTD-Sim 将对该文件进行计算得到最终的结果。

.SUBCKT circuit port1 port2 R1 port1 1 7.779e-03 L2 1 2 0.000e+00 R3 2 3 1.215e+02 L4 2 3 2.464e-10 R5 3 4 8.678e-02 L6 3 4 3.081e-11 R7 4 5 8.359e-03 L8 4 5 1.224e-11 R9 5 port2 1.004e+02 C10 5 port2 7.469e-08 .ENDS circuit

软件同时显示运行日志。

View	×
-> PARSING AND INIALIZING is beginning	•
======	
min_error: 0.013849	
best_try: 93	
RLC fitting accomplished	
>>>> Normal mode enabled <<<<	
Circuit equation:16-voltage nodes, 5-current branches, 25-ckt-elements	
Circuit element:	
cccs 2	
nport 1	
port 2	
vccs 16	
vcvs 2	
vsource 2	
total 25	
SIMULATION is completed successfully	
wall-clock time begins @: Thu Jul 27 15:27:20 2023	
wall-clock time stops @: Thu Jul 27 15:27:24 2023	
Total CPU time(s): 0.281000	
Total Wall time(s): 3.299279	-

4.4.3.2 S-Parameter Smoothing

S-Parameter Smoothing 提供 S 参数图像平滑功能。

S-Parameter S	moothing	×
Topology:	Series Numpoles: 5 📩	
Window:		
High Freq:	Low Freq:	
SP Input File	s\workspace\2023-07-27\14_40_54_prj\C0201X5R104M6R3NTA.S2P	Open
SP Output Fi	e: s_C0201X5R104M6R3NTA	Run

同上打开文件并写入输出文件名称。

可调参数:

•Topology: 电路拓扑结构,提供串联与并联两种结构。

Topology:	Series 👻	
	Series	
SP Input File:	Parallel	

•Numpoles: 阶数,可选择 5~99 的整数,默认为 5。

Numpoles: 5 +	
Window:	
High Freq:	Low Freq:

•Window: 窗口数,可填入一个整数,使用相应数量的采样点进行平滑计算,默认为 5。

•High Freq:参与平滑计算的最高频率,默认为导入 S 参数文件的最高频率。

•Low Freq:参与平滑计算的最低频率,默认为导入S参数文件的最低频率。

同样先生成中间网表文件 Netlist_Smooth.sp

View		×
File Name:	D:\BTD-Abs\Netlist_Smooth.sp	Open
*Generated f	from BTD-RE for BTDSIM 2023-07-27 15:37:50	<u>.</u>
*simulator la	ng=spice	
port1 P1 0 p	ort=1 z0=50	
port2 P2 0 p	ort=2 z0=50	
Scap p1 p2 (0 fqmodel=sfqmodel numpoles=5	
+sp2smsp=y	series yes smsp_outfile="C0201X5R104M6R3NTA"	
.MODEL sfqr +DATAFILE=	nodel SP N=2 SPACING=POI VALTYPE=CARTESIAN "C0201X5R104M6R3NTA.S2P"	
END		
		+

最后平滑结果对比,红色为处理前,黄色为处理后。

4.4.3.3 S-Parameter Concatenation

S-Parameter Concatenation 提供 S 参数拼接功能。用户可在 Concat and Z Conversion、Concat 与 Z Conversion 选项卡中选择需要的功能并导入相应文件,点击 Run 按钮输出处理后的文件。

S-Parameter Concatenation	×
Concat And Z Conversion Concat Z Conversion	
Topology: Series 🕶 Numpoles: 5 🔆	
SP Source File:	Open
Z Input File:	Open
SP Input File:	Open
SP Output File: tmp	Run

Concat 提供两个 S 参数文件的直接拼接, **Z Conversion** 提供 Z 对 S 参数的转换, **Concat and Z Conversion** 为前两个功能的叠加,为了展示,用 **Concat and Z Conversion** 为例。

可调参数:

•Topology: 电路拓扑结构,提供串联与并联两种结构。

Topology:	Series 👻				
	Series				
SP Input File:	Parallel				

•Numpoles: 阶数,可选择 5~99 的整数,默认为 5。

•Z Input File: 导入 Z 参数的.CSV 类型文件,软件将先进行 Z 参数转换为 S 参数的工作,以便后续拼接。

•S Input File: 导入待拼接的 S 参数文件,软件将会把低频 S 参数文件与高频 S 参数文件拼接为全频 S 参数文件。

产生的中间网表。

View		×
File Name:	D:\BTD-Abs\Netlist_Concat_Z2Sp.sp	Open
*Generated f *simulator lan port1 P1 0 por port2 P2 0 por Scap p1 p2 0 +topology=p +concatsp=y sp_outfile="c .MODEL sfqn +DATAFILE="	rom BTD-RF for BTDSIM, 2023-07-27 16:10:59 ng=spice ort=1 z0=50 ort=2 z0=50 0 fqmodel=sfqmodel numpoles=5 parallel es z2sp=yes sp_infile="C0201X5R104M6R3NTA.S2P" _C0201X5R104M6R3NTA" z_infile="Z.CSV" hodel SP N=2 SPACING=POI VALTYPE=CARTESIAN 'C0201X5R104M6R3NTA.S2P"	

拼接前后的图像对比情况:

从上到下,红色为低频 S 参数文件,蓝色为高频 S 参数文件,绿色为拼接后的全 频 S 参数文件

4.4.3.4 ZYQCR Conversion

ZYQCR Conversion 提供 S 参数转换 ZYQCR 等效电路功能。用户可勾选需要转换 的参数类型并导入 S 参数文件,点击 Run 按钮输出转换后的各参数数据文件。

ZYQCR Conversion		×
Topology: Serie	es Numpoles: 5 📩	
	ESR C Q	
SP Input File:	C:\Users\44257\Desktop\Example\C0201X5R104M6R3NTA.S2P	Open
X Output File: tm	p	Run

可调参数:

•Topology: 电路拓扑结构,提供串联与并联两种结构。

Topology:	Series 🔻
	Series
SP Input File:	Parallel

•Numpoles: 阶数,可选择 5~99 的整数,默认为 5。

5 ÷ Numpoles:

- •Z:是否转换为阻抗 Z。
- •Y: 是否转化为导纳 Y。
- •ESR: 是否转换为等效串联电阻 ESR。
- •C: 是否转化为电容 C。
- •Q:是否转换为品质因子 Q。

产生的中间网表。

View		×
File Name:	D:\BTD-Abs\Netlist_Sp2X.sp	Open
*Generated	from BTD-RF for BTDSIM, 2023-07-27 16:21:19	<u></u>
*simulator la	ang=spice	
port1 P1 0 p port2 P2 0 p	port=1 z0=50 port=2 z0=50	
Scap p1 p2 +topology= +sp2x=ZYR0	0 fqmodel=sfqmodel numpoles=5 series CQ x_outfile="tmp"	
.MODEL sfq +DATAFILE=	model SP N=2 SPACING=POI VALTYPE=CARTESIAN "C0201X5R104M6R3NTA.S2P"	
END		
		<u> </u>

相应的Z、Y、Q、C、R 文件。

\rightarrow \checkmark \uparrow	🚞 « 用户 > 44257 > xschematic > 20	23-07-07 > 14_01_22.483_	prj	~ C	在 14_01_22.483_prj 中搜索	
主文件夹	名称 ^	修改日期	英型	大小		
sixian - 个人	C0201X5R104M6R3NTA.S2P	2023/7/4 10:56	S2P 文件	26 KB		
	Netlist_Sp2X.sp	2023/7/7 14:01	SP 文件	1 KB		
桌面 🖈	test_C.CSV	2023/7/7 14:01	XLS 工作表	7 KB		
下载 🔹 🖈	test_Q.CSV	2023/7/7 14:01	XLS 工作表	6 KB		
文档 🖈	test_R.CSV	2023/7/7 14:01	XLS 工作表	7 KB		
图片 📌	test_Y.CSV	2023/7/7 14:01	XLS 工作表	7 KB		
音乐 🔹	test_Z.CSV	2023/7/7 14:01	XLS 工作表	10 KB		
视频 🖈					_	
Example						
14_38_36.380_j						

4.5 Subcircuit model and spice macro model

BCS 提供了子电路文件和 spice 宏文件导入并仿真的功能,因为子电路和 spice 宏 除了定义方式不同外没有区别,所以这里以子电路为例进行介绍。

器件图标:

						11 12 13 13 13	20 202 22	100 SOL 2				0.00			85 72	16 12	10 KO	N 1 1	1	17 11	
						19 19 19	202 22	3002 S		1		3	1	1	12	73	33		1	2	
				1.1.1		1 2 5) 5) 7)	20	30		14 - 14 14 - 14	1 122	- 222						1	11	14	
化化化化 化化化化化			1 (C)	8.9		4) 1 년 1	10	20	4.1						±1.	±1.					
										0 4 - 0	6 96	96	36	42	÷33	÷3	1	9	54	54	26
化化学 计算法 计算法								-	_	-	1.00						1	-			
							L	153	-	4	- 143						13	-			
							L	63	-	œ.	-60						83	-			
							L	63	-	Œ	- (6)						63	9			
							L	63		æ	- (6)						63	2			
							L	23	-	12	1	10	۰L	14			23	9			
							L	1.5	-		1	r	•.[1.1				-			
	ar s	5 55	172	<i>.</i>		7.1	L	-		1	1			-	-		2.1	-	1.7	17	
73 XG	94 Q	2 10	125	125		19	L	188	2	ii.	1	-1	D	п	п	E		-	14	i.	ŝ.
	(N = 0)	1 N.	V.	Υ.	12	80	L	202	1	N.	- 22	N.	V.	\mathcal{D}	20	20	20	1	11	1	4
5.3							L	$i \geq i$	4	4	- 68										
1 S.							L	155		4	-12						13	-			
9 9									_	_	- 63						83	ē.			
9 9							-	-	-									-			
5 H							63	63	-								63	-			
3. 22								13	-									-			
3.58							-	-	-									-			
																		-			
								100													

双击进入编辑界面;

Name	Value		Show	Show Name	H Align	V Align	Italic	Bold
Reference	XCH1				Left	Center		
Value	Channel				Left	Center		
Footprint					Center	Center		
D <mark>atasheet</mark>					Center	Center		
	SUBCKT				Center	Center		
Sim.Device								
Sim.Type	XCH				Center	Center		
Sim.Device Sim.Type + ↑	XCH	Attributes			Center	Center	from Lik	prary
Sim.Device Sim.Type + 1	xcH	Attributes	e from sir	mulation	Center	Center late Symbol Change S	from Lik	prary
Sim.Device Sim.Type + 1 1 Seneral Jnit: 1 Alternational	xcH ↓	Attributes	e from sir e from bi	mulation Il of materials pard	Center	Center late Symbol Change S Edit Syn	from Lib Symbol	prary

点击 Simulation Model 后按照文件路径选择子电路网表.mod 文件,软件将读取 文件自动填写子电路名称 Component。

	ers\///257\vschems	Browse
10		
omponen	t: circuit	

加载子电路文件后,图标将对应子电路的内容配置端口数量。

				te			100	23					193			53	103					121				53
				55									33			23						33				
				35			5.5	2					3				$\mathbb{C} \subseteq$					3				
				35			10.00	2					\otimes			${\mathbb S}^{(2)}$	${\mathbb C} \geq {\mathbb C}$					\simeq				$\{ \cdot \}$
15		$S^{(1)}_{ij}$	57	22		70	2.33	13	47		575	575	35		77.	22	233	117				33			$\overline{2}$	22
94		122	123	20		Г		_		_	_		_					_	-	٦	222	22		22	77.	20
54	24	96	36	*	4	Т	1884	24	5.4	24	96	96		4.5	÷3	10	1884	3.4	14	Т	96		42	42	23	25
				2		н	F	-					23			10	1111			Т		23				10
				92		н														Т						
				÷		L	62.9	- 29								60	62.9			Т						62
				$\hat{\tau}$		н	6.53	53					$(\overline{\gamma})$			\tilde{c}_{i}	0.53			Т		$(\overline{\gamma})$				$\tilde{\mathcal{C}}_{i}$
				$\hat{\tau}$		L	10.0	53								${\mathbb S}_{\mathbb S}^{n}$	0.53			Т		(\mathbf{r})				$\tilde{g}_{ij}^{(2)}$
				÷.		н						18	12	з.	11	\mathbb{R}^{2}				Т		33.				
				0	_	۰.	$\{ \cdot, \cdot \}$				C	ī٢	C	ui	t		$\{ \cdot, \cdot \}$			ł	-	O				
37		578	572	53		н	2.5	33	3.5		1		26	-		12	225	33		Т	578	33			70	\mathbb{R}^{2}
94		19	125	20		н	1993	84	112		222	222	2		233	23	1996	112		Т	222	1			11	22
02	14	N.	1	1	1	н	1972	174	02	1	d.	1	1	1	20	57	1973	02	1	Т	N.	2	12	12	80	11
				22		L	11-14	3				((11			12-24			Т		23				10
				92		L					12			1	10	18	1973			Т						
				± 2		н	67.9	19			୍ (าล		n	e	100			Т		(\pm)				50
				$\pm i$		н	629	- 29					1			10	100			Т		(\cdot)				\mathbb{R}^{2}
				$\hat{\mathbf{e}}$		-														-		(\mathbf{r})				\tilde{c}_{2}
				55									33									33				
				53			10.00										10.0									
				31			1.1.1	- 1					-			50	1.1.1					-				50
11.7		575	1	-		7.1	5.13		1.1		575	575	-		7.1	-		11.2			575	-			7.71	-
10	1	1	¥.	2	Y.	10	11/12	114	0	14	1	N.	2	1	Y.	5	1976	12	1	1	N.	2	1	1	10	11

4.6 Voltage source and current source

BCS 提供了种类丰富的电压/电流源。电压源按照设置提供电压,电流源按照设置 提供电流,除了提供的类型不同以外,相同种类的电压/电流源的设置方式是一致 的,所以这里统一以电压源为例进行介绍。

4.6.1 DC

BCS 提供了独立直流电压/电流源。用于直流偏置点分析,瞬态分析等。

器件图标:

双击打开编辑界面并点击下面 Simulation Model 设置参数。

Pin Assignments				
SPICE model from file	(*.lib, *.sub or *.ibs)			
Model:				T
Built-in SPICE model				
Device: Valtana Cau	rce			•
voitage Sou				
Type: DC				-
Type: DC				-
Type: DC				•
Type: DC Parameters Code	Value	Linit	Defa	▼ Type
Type: DC Parameters Code Parameter	Value	Unit	Defa	▼ Type
Type: DC Parameters Code Parameter DC value (dc) □ AC	Value 1	Unit V	Defa 0	▼ Type Float
Type: DC Parameters Code Parameter DC value (dc) □ AC AC magnitude (ac)	Value 1	Unit V V	Defa 0	▼ Type Float
Type: DC Parameters Code Parameter DC value (dc) □ AC AC magnitude (ac) AC phase (ph)	Value 1	Unit V V	Defa 0 0 0	▼ Type Float Float
Type: DC Parameters Code Parameter DC value (dc) □ AC AC magnitude (ac) AC phase (ph)	Value 1	Unit V V	Defa 0 0 0	▼ Type Float Float Float
Type: DC Parameters Code Parameter DC value (dc) □ AC AC magnitude (ac) AC phase (ph)	Value 1	Unit V V ∘	Defa 0 0 0	▼ Type Float Float Float
Type: DC Parameters Code Parameter DC value (dc) □ AC AC magnitude (ac) AC phase (ph)	Value 1	Unit V V	Defa 0 0 0	▼ Float Float Float

可调参数:

•DC value (dc): 直流电压值。

4.6.2 AC (Sine)

BCS 提供了独立交流电压/电流源。

器件图标:

同上方式设置参数。

COLCE madel from Cla (* 11)	*				
File:	, ".sub or ".ibs)				De
Model:					
Built-in SPICE model					
					-
Device: Voltage Source					-
Device: Voltage Source Type: Sine Parameters Code					•
Device: Voltage Source Type: Sine Parameters Code Parameter	Value	Unit	Defa	Туре	•
Device: Voltage Source Type: Sine Parameters Code Parameter DC offset (dc)	Value 0	Unit V	Defa	Type Float	•
Device: Voltage Source Type: Sine Parameters Code Parameter DC offset (dc) Amplitude (ampl)	Value 0 1	Unit V V	Defa	Type Float Float	•
Device: Voltage Source Type: Sine Parameters Code Parameter DC offset (dc) Amplitude (ampl) Frequency (f)	Value 0 1 1k	Unit V V Hz	Defa 1/tstop	Type Float Float Float	•
Device: Voltage Source Type: Sine Parameters Code Parameter DC offset (dc) Amplitude (ampl) Frequency (f) Delay (td)	Value 0 1 1k 0	Unit V V Hz s	Defa 1/tstop 0	Type Float Float Float Float	-
Device: Voltage Source Type: Sine Parameters Code Parameter DC offset (dc) Amplitude (ampl) Frequency (f) Delay (td) Damping factor (theta)	Value 0 1 1k 0 0	Unit V V Hz s 1/s	Defa 1/tstop 0 0	Type Float Float Float Float Float	•

•DC offset (dc): 直流偏置电压。

•Amplitude (ampl): 幅度。

•Frequency (f):频率。

•Delay (td):从时间0开始的延时。

•Damping factor (theta): 阻尼系数。

•Phase (phase):相位。

4.6.3 Pulse

- 4.6.4 Exponential
- 4.6.5 Piecewise linear
- 4.6.7 White noise
- 4.6.8 Pink noise (1/f)
- 4.6.9 Burst noise
- 4.6.10 Random uniform
- 4.6.11 Random normal
- 4.6.12 Random exponential
- 4.6.13 Behavioral

5 Simulation commands & Eye probe

5.1 Simulation commands

BCS 提供了多种常用电路仿真以及高速信号及射频电路仿真功能。用户可依据仿真 需求在右侧常用元件栏或 Add symbol 选项中添加仿真命令。

5.1.1 TranSim

TranSim 提供瞬态仿真功能。

元件图标:

Start:	0.000000	-		-
Stop:	10.000000	- -	n	-
Step:	1.000000	-	n	-

描述
起点时间
停止时间
时间步长

5.1.2 AcSim

AcSim 提供小信号频域分析功能。

元件图标:

Type:	LIN -	Num of Points:	50	•
Start:	1G			
Stop:	10G			

参数	描述
Start	仿真起始频率
Stop	仿真截止频率
Туре	采样模式,分为 Linear 或 Decade
Number of Point	在 Start 与 Stop 的频率范围内采样的点数

5.1.3 DcSim

DcSim 提供直流扫描功能。

元件图标:

VPULSE_1	Start:	0.000000	<u>^</u>	- V/A
	Stop:	100.000000		J 👻 V/A
	Step:	1.000000	× (u - V/A

参数 描述 Start 起始值 Stop 截止值 Step 步长

5.1.4 ChannelSim

ChannelSim 提供通道仿真功能。

元件图标:

Channel Simulation Settings		×
Choose Analysis Mode:		
 r Bit by Bit C Statistical 	C Mode1 C M	ode2
Option:		
AMI_Disable (simulate without ami)		
□ MER:	0	(multi edges method)
□ Tolerance of BER:	2.000000	f
Load Edge Response		
SCI Format	9 -	
🗖 Tran Init	100 ÷	
I T-Resolution	128	
✓ V-Resolution	256	
Contour list	1e-12 1e-11 1e-10	
🔽 AMI impluse		
🗖 TX Jitter		
□ RX Jitter	· · · ·	
Max Time Step:	1.00	p 💌
✓ Probability Tolerance	1.000000	u 🔻
☐ Number of Time Points per UI:	32 📩	
		OK Cancel

软件提供 Bit by Bit(逐位计算)或 Statistical(统计)的计算方式来高效地实现 瞬态仿真。

可调参数:

参数	描述
Number of Bits	逐位计算中循环的次数
Mode 1	逐位计算中使用单脉冲响应处理
Mode 2	逐位计算中使用上升沿和下降沿处理
AMI_Disable	选中该选项后,软件在仿真的时候不会使用 AMI 对数据进行均衡,仿真结果为信号经过通道本身的无均衡结果。

参数	描述
MER	多边沿算法。选中后用户可以选择若干阶数的多边沿算法,当 然,阶数越多,精度越高,但是速度越慢,如果上升沿下降沿是 对称的,不建议使用。
Tolerance of BER	设置误码率偏差
Load Edge Response	加载边沿响应的结果。如果用户在不改变通道内容的前提下,只 想改变 AMI 参数的值来重复仿真,这个时候选中该选项,则软件 会使用上一次通道的边沿响应的结果直接进行计算,节省了仿真 的总时长。
T-Resolution	T轴分辨率
V-Resolution	V轴分辨率
TX Jitter	加入 TX 端抖动
RX Jitter	加入 RX 端抖动
Max Time Step	最大时间步长
Probability Tolerance	概率容差
AMI impulse	仿真结束后,输出系统的阶跃响应,单比特相应和冲激响应。
Contour list	生成多个轮廓的列表
SCI Format	在计算过程中,保留小数点后的位数。默认为9,如无特殊需要,无需修改。
Tran Init	对通道进行瞬态仿真的时候,仿真的总时长。内容为信号周期乘 以填入的数据。

5.1.5 SpSim

SpSim 提供 S 参数仿真功能。

器件图标:

5.1.6 Others

BCS 还提供了手动输入仿真命令的功能, 3.1.4.2 Add text 中介绍过, 此处略过。

5.2 Eye probe

器件图标:

依据信号类型在右侧常用元件栏或 Add symbol 选项中选择眼图/差分眼图探针并 放置在探测点处。

6 BTD-Wave oscilloscope

本章主要介绍 BCS 内置的 BTD-Wave 波形显示器,方便用户在仿真结束后观测波形,以及对数据进行后处理。

6.1 Open

BTD-Wave 在仿真结束时将自动打开,用户亦可点击 Tools 工具栏中的 BTDWave 按钮手动打开示波器。

6.1.1 Open files

BCS 波形显示器支持打开 S 参数文件.SnP, BTD-Sim 的结果输出文件.out,用户可以点击 File 工具栏下的 Open 选项,按照路径打开相应文件。

🚺 BTDWave

Fi	le	Edi	t Vie	w To	ols	S	tate	Windo	w He
ų,	0p	en					Ctrl	+0	
E	0p	en N	etList						
-	On	en D	irecto	rv					
	C P		110000	L J					
	ъa	ve							
	Pr	int					Ctrl	+P	
Ĩ	Re	load	Curre	nt Fi	lle			+R	
~	F11	11 R	eload i	Curre	ant	Fi	16		
	D-		LII D	-1	-116	ц т.	01	01-2.64	
	Ке	load		iles				+SNIIT	+K
		ose	Curren	t Fil	le				
		ose	All Fi	les					
	Sa	cein	n						
	50	3310.							125
	Re	cent	File						• • •
	Ex	it					Ctrl	+Shift	+Q
HIL BIL	JWave: 0	Jpen File						- L	
Look i	n:	C:\Vs	ers\44257\Deskto	p\Example			<u>_</u>	• • • 💋	
	My Con	nputer	Name	Siz	е Тур	e j	Date Modified		
	44257		libs		Fil	der 2	2023/7 10:10		
			netlist_tile	TA COD 05	Fil	der 2	2023/7/4 11:05		
			C0201X5R3N	HB.S2P 25.	KiB S2P	File 2	2023/7/4 10:56		
			C0402X5R3N	TC.S2P 25.	KiB S2P	File 2	2023/7/4 10:56		
			C0402X5R3N	TC.S2P 25.	KiB S2P	File 2	2023/7/4 10:56		
			newcfg(1).out	9	9iB out	File 2	2023/7 15:07		
			U-120T.S4P	7	6iB S4P	File 2	2023/7 10:28		
			xxxx.out	28	KiB out	File 2	2023/7 15:55		

Files of type: All Files (*)

xxxx.sp SZ.CSV

в

界面最下方的 Console 栏会显示出是否打开成功的信息。

C:/Vsers/44257/Desktop/Example/newcfg(1).out parsed successfully

C:/Users/44257/Desktop/Example/CO201X5R475M6R3NHB.S2P parsed successfully

Data Base 栏存放打开文件中的各个仿真信号,单击即可显示在显示窗中。

Data Base		
Name	Val./Pts	Туре
👻 Transient	(18 vars)	
time	🗠 (376982 pts)	s
v(2)	🗠 (376982 pts)	V
x1.126	🗠 (376982 pts)	V
x1.131	🗠 (376982 pts)	V
x1.137	🗠 (376982 pts)	V
x1.137	🗠 (376982 pts)	V
v(1)	🗠 (376982 pts)	V
x1.136	🖾 (376982 pts)	V
x1.137	🗠 (376982 pts)	V
x1.134	🗠 (376982 pts)	٧
x1.132	🗠 (376982 pts)	V
x1.132	🗠 (376982 pts)	V
x1.134	🗠 (376982 pts)	V
x1.131	🗠 (376982 pts)	V
x1.131	🗠 (376982 pts)	V
x1.xvia	🗠 (376982 pts)	A
x1.xvia	应 (376982 pts)	A
vsrc_#	应 (376982 pts)	A

打开多个文件时,可以在 Manage DB 中切换需要显示的文件。

F1 F2		
1	Manage DB	
Tag	FileName	Туре
F1	newcfg(1). out	Nutmeg
F2	CO2O1X5R475M6***	s2p

6.2 Display and measurement

6.2.1 Display

BTD-Wave 可以在窗口中以多种方式显示图像,如单个信号,堆栈,叠加等。

6.2.1.1 XY-Plot

在工具栏下方提供转换不同图像类型的按钮。

左边第一个选项为 XY 坐标图。

6.2.1.2 Bar view

左二为条形图。

6.2.1.3 Smith chart

左三为史密斯图。可画出 S 参数文件.SnP 的 Smith 图像。

6.2.2 Measurement

Marker	Alt+M
Horizontal Ruler	Alt+H
Vertical Ruler	Alt+V
Ruler	Alt+R
Horizontal Trace	Alt+Shift+H
Vertical Trace	Alt+Shift+V
Text Annotation	Alt+A
TimeDomain Measurements	Alt+T
Clear Measure Cursors	

与常见测量功能相同,这里不再赘述。

6.3 Eye diagram

用户可以选中时域波形单击右键打开菜单。

Properties	
Delete	Del
Hide	5
Raise	
Auto Eye Diagram	
Eye Diagram	
TimeDomain Measuren	nents

选中 Auto Eye Diagram 将将时域波形转化为眼图模式。

右键单击调出菜单,选择 Eye Measurements,进一步对眼图进行处理。

6.3.1 Measurement and mask

选择 eye width and height 选项,软件将标注出眼图的眼宽和眼高。

选择 eye jitter 选项,在参数栏中填写需要测量抖动的眼图的纵坐标,软件将给出 对应的抖动大小。

选择 Eye Mask 选项,在参数栏中填写眼图模板的高和宽,软件将在示波器界面画出对应的模板。

选择 eye contour 选项,即可画出眼图对应的轮廓图。

选择 eye dialog 选项,即可显示眼图对应的参数。

7066	0.04201 -11	
luffset:	8.04321e=11	
TPeriod:	2e-10	
Num of VI	: 1	Appl
		Disab

6.3.2 Other graphics

选择 Jitter PDF 选项,填入横轴或纵轴坐标,即可显示出对应坐标下抖动随另一坐标变化的概率密度函数变化曲线。

选择 Bathtub 选项,填入横轴或纵轴坐标,即可显示出对应坐标下的浴缸曲线。

选择 BER Contour 选项,即可显示眼图对应的 BER 轮廓图。

选择 BER Diagram 选项,即可显示眼图对应的 BER 分布图像。

选择 3D Diagram 选项,即可显示相应的 3D 眼图。

Appendix: Simulation Command Syntax

常用电路分析

1) 小信号频域分析.ac 语法

.ac frequencysweep < analysisName=value >

参数	描述
frequencysweep	频率扫描模式。一般格式 LIN npts OCT npts DEC npts
	start_value end_value 表示在[start_value, end_value]频率范围
	内,以 linear, octave 或 decade 模式采样 npts 频率点。
analysisName	ac 分析结果名称。可以用于后续分析

2) 直流扫描.dc 语法

.DC source_name1 [START=]start_value [STOP=]end_value [STEP=]step_value [MONTE=value]

描述
以下之一: • 独立电压源名称• 独立电流源名称• TEMP
●.PARAM
起始值
终点值
步长
蒙特卡洛迭代次数

3) 瞬态分析.tran 语法

. tran < tstep=value > tstop=value < tstart=value outputstart=value maxstep=value minstep=value uic=0|1 noiseSeed=value noiseFmax=value noiseScale=value noiseFmin=value noiseTmin=value noiseUpdateMethod=value noiseFilter=value noiseRuns=value parasiticMode=value discreteTimeStepMode=value discreteTimeStepRatio=value discreteOversteppingParam=value reltol=value vntol=value abstol=value chgtol=value maxiter=value maxiter_dc=value newtonsolvemethod=value gmin=value dcmethod=value method=value cmin=value convergenceLevel=value analysisName=value >

参数	描述
tstep	时间步长
tstop	终点时间
tstart	起点时间
outputstart	输出起始时间
maxstep	瞬态分析最大步长
minstep	瞬态分析最小步长。默认值 1e-15
uic	是否使 BTDSim 使用.ic 语句中指定的 节点电压来计算初始瞬态条件,而不

参数	描述
	是初始 DC 操作点
noiseSeed	瞬态噪声随机状态
noiseFmax	最大噪声频率
noiseFilter	噪声过滤方法
noiseRuns	噪声运行次数
parasiticMode	寄生参数模式
discreteTimeStepMode	时间步离散模式
discreteTimeStepRatio	时间步离散比率
discreteOversteppingParam	时间步离散越界参数
reltol	相对收敛精度
vntol	电压收敛精度
abstol	绝对收敛精度
chgtol	设置所有 HSPICE 电容的绝对和相对 电荷容差
maxiter	最大牛顿迭代次数。默认值10
maxiter_dc	DC 中最大牛顿迭代次数。默认值 100
newtonsolvemethod	牛顿迭代方法
gmin	最小接地电导值
dcmethod	DC 收敛方法
Method =euler trap traponly gear gear2 gear2only	选择用于瞬态分析的算法
cmin	最小接地电容值
Errpreset=liberal moderate conservative	精度设置: •liberal: 放宽内部模拟 器精度设置,例如误差(包括 trtol) 和时间步长控制(包括最大步和最小 步)。使用 liberal 可以通过轻微降低 精度来提高模拟性能•moderate: 不 做任何调整。•conservative: 将 reltol 降低一个数量级,并将 maxstep 的上限设置为 tstop/100(代替默认 值 tstop/50)。可使用 param 调整这 个值
convergenceLevel	收敛判定方式
analysisName	tran 分析结果名称。可以用于后续分

4) 噪声分析.noise 语法

.noise output < inputsource > frequencysweep < analysisName=value >

参数	描述
output	某节点上的总噪声输出电压
inputsource	作为噪声输入基准的独立电压源名或独立电流源名
frequencysweep	频率扫描模式。一般格式 LIN npts OCT npts DEC npts
	start_value end_value 表示在[start_value, end_value]频率范围
	内,以 linear, octave 或 decade 模式采样 npts 频率点。
analysisName	noise 分析结果名称。可以用于后续分析

5) 工作点分析.op 语法

.0P [time1] [time2] ...

- 参数 描述
- time1 计算在瞬态分析期间 time=time1 的瞬态工作点
- time2 计算在瞬态分析期间 time=time2 的瞬态工作点
- ... 其它时间点列表

射频电路分析

1. hbpss: 基于谐波平衡法(harmonic balance)的周期性稳态分析(单频 率),语法如下

Usage: .hbpss nharm=value < tperiod=value frequency=value tstab=value tstabNcycle=value uic=0|1 init=value maxorder=value osr=value outputtype=value harmonicbalance=value readns=value convergenceLevel=value pssNormBasedJacobianBypass=value pssJacobianBypassNorm=value pssFirstNewtonBypass=value turbo=value savetstab=0|1 printic=0|1 analysisName=value restart=value >

参数	描述
nharm	谐波数量
tperiod	beat 周期:所有独立来源的最小公倍数
frequency	基础频率
tstab	周期性稳态分析前的瞬态仿真时间。默认值:10 倍驱动源周期
tstabNcycle	
uic	是否使 BTDSim 使用.ic 语句中指定的节点电压来 计算初始瞬态条件,而不是初始 DC 操作点
init	
maxorder	
osr	
outputtype	输出类型
harmonicbalance	
readns	包含初始节点集的文件
convergenceLevel	
pssNormBasedJacobianBypass	
pssJacobianBypassNorm	
pssFirstNewtonBypass	
turbo	
savetstab	指定是否将瞬态分析结果保存在仿真输出文件中
printic	是否将最终状态保存到文件中
analysisName	hbpss 分析结果名称,可以用于后续分析

1. hboscpss: 振荡器专用 HB (频率为额外变量),语法如下

Usage: .hboscpss output frequency=value nharm=value < tstab=value uic=0|1 init=value osr=value phaseConstraintMethod=value readsoln=value writesoln=value readns=value convergenceLevel=value pssNormBasedJacobianBypass=value pssJacobianBypassNorm=value pssFirstNewtonBypass=value turbo=value savetstab=0|1 printic=0|1 analysisName=value restart=value >

参数	描述
output	
frequency	基础频率
nharm	谐波数量

参数	描述
tstab	周期性稳态分析前的瞬态仿真时间。默认值: 10 倍驱动源周期
uic	是否使 BTDSim 使用.ic 语句中指定的节点电压来 计算初始瞬态条件,而不是初始 DC 操作点
init	
osr	
phaseConstraintMethod	
readsoln	
writesoln	
readns	包含初始节点集的文件
convergenceLevel	
pssNormBasedJacobianBypass	
pssJacobianBypassNorm	
pssFirstNewtonBypass	
turbo	
savetstab	指定是否将瞬态分析结果保存在仿真输出文件中
printic	是否将最终状态保存到文件中
analysisName	hboscpss 分析结果名称,可以用于后续分析

1. hbpnoise 语法如下

Usage: .hbpnoise output < inputsource > frequencysweep largeSignalName=value < sweeptype=value relharmnum=value refsideband=value stimuli=value readns=value convergenceLevel=value pssNormBasedJacobianBypass=value pssJacobianBypassNorm=value pssFirstNewtonBypass=value turbo=value savetstab=0|1 printic=0|1 analysisName=value restart=value >

or .hbpnoise output < inputsource > frequencysweep frequency=value nharm=value < sweeptype=value relharmnum=value refsideband=value tstab=value tstabNcycle=value uic=0|1 init=value solver=value maxorder=value osr=value readsoln=value writesoln=value stimuli=value readns=value convergenceLevel=value pssNormBasedJacobianBypass=value pssJacobianBypassNorm=value pssFirstNewtonBypass=value turbo=value savetstab=0|1 printic=0|1 analysisName=value restart=value >

参数

描述

output inputsource

参数	描述
frequencysweep	频率扫描模式。一般格式 LIN npts OCT npts DEC npts start_value end_value 表示在[start_value, end_value]频率范围内,以 linear, octave 或 decade 模式采样 npts 频率点。
largeSignalName	大信号分析的标识符名称
sweeptype	指示扫描频率范围是输入的绝对频率还是相对频 率
relharmnum	对于 sweeptype=relative,相对频率参考的谐波值
refsideband	在计算输入参考噪声或噪声系数时,使用与此边 带相关的转换增益
stimuli	
convergenceLevel	
pssNormBasedJacobianBypass	
pssJacobianBypassNorm	
pssFirstNewtonBypass	
turbo	
savetstab	指定是否将瞬态分析结果保存在仿真输出文件中
printic	将最终状态保存到文件中
analysisName	hbpnoise 分析结果名称,可以用于后续分析
restart	重启选项: •将此选项设置为 yes 以从头开始重新 启动求解过程•将此选项设置为 no 以重新使用来 自前一个扫描点的解作为初始猜测
frequency	基础频率
nharm	谐波数量
tstab	周期性稳态分析前的瞬态仿真时间。默认值:10 倍驱动源周期
tstabNcycle	
uic	是否使 BTDSim 使用.ic 语句中指定的节点电压来 计算初始瞬态条件,而不是初始 DC 操作点
init	
solver	
maxorder	
osr	
readsoln	
writesoln	

参数	描述
readns	包含初始节点集的文件

1. hbpac 语法如下

Usage: .hbpac frequencysweep frequency=value nharm=value < sweeptype=value relharmnum=value freqaxis=value tstab=value tstabNcycle=value uic=0|1 init=value solver=value maxorder=value osr=value readsoln=value writesoln=value stimuli=value readns=value convergenceLevel=value pssNormBasedJacobianBypass=value pssJacobianBypassNorm=value pssFirstNewtonBypass=value turbo=value savetstab=0|1 printic=0|1 analysisName=value restart=value >

or .hbpac frequencysweep largeSignalName=value < sweeptype=value relharmnum=value freqaxis=value stimuli=value readns=value convergenceLevel=value pssNormBasedJacobianBypass=value pssJacobianBypassNorm=value pssFirstNewtonBypass=value turbo=value savetstab=0|1 printic=0|1 analysisName=value restart=value >

参数	描述
frequencysweep	频率扫描模式。一般格式 LIN npts OCT npts DEC npts start_value end_value 表示在[start_value, end_value]频率范围内,以 linear, octave 或 decade 模式采样 npts 频率点。
frequency	基础频率
nharm	谐波数量
sweeptype	指示扫描频率范围是输入的绝对频率还是相对频 率
relharmnum	对于 sweeptype=relative,相对频率所参考的谐波 值
freqaxis	结果是输出与输入频率、输出频率还是输出频率 的绝对值
tstab	周期性稳态分析前的瞬态仿真时间。默认值: 10 倍驱动源周期
tstabNcycle	
uic	是否使 BTDSim 使用.ic 语句中指定的节点电压来 计算初始瞬态条件,而不是初始 DC 操作点
init	
solver	

参数	描述
maxorder	
osr	
readsoln	
writesoln	
stimuli	
readns	包含初始节点集的文件
convergenceLevel	
pssNormBasedJacobianBypass	
pssJacobianBypassNorm	
pssFirstNewtonBypass	
turbo	
savetstab	是否将瞬态分析结果保存在仿真输出文件中
printic	将最终状态保存到文件中
analysisName	hbpac 分析的标识符名称
restart	重启选项:•将此选项设置为 yes 以从头开始重新 启动求解过程•将此选项设置为 no 以重新使用来 自前一个扫描点的解作为初始猜测
largeSignalName	大信号分析的标识符名称

1. hbpxf 语法如下

Usage: .hbpxf output frequencysweep frequency=value nharm=value < sweeptype=value relharmnum=value freqaxis=value tstab=value tstabNcycle=value uic=0|1 init=value solver=value maxorder=value osr=value readsoln=value writesoln=value stimuli=value readns=value convergenceLevel=value pssNormBasedJacobianBypass=value pssJacobianBypassNorm=value pssFirstNewtonBypass=value turbo=value savetstab=0|1 printic=0|1 analysisName=value restart=value >

Or .hbpxf output frequencysweep largeSignalName=value < sweeptype=value relharmnum=value freqaxis=value stimuli=value readns=value convergenceLevel=value pssNormBasedJacobianBypass=value pssJacobianBypassNorm=value pssFirstNewtonBypass=value turbo=value savetstab=0|1 printic=0|1 analysisName=value restart=value >

参数	描述
output	
frequencysweep	频率扫描模式。一般格式 LIN npts OCT npts DEC

参数	描述
	npts start_value end_value 表示在[start_value, end_value]频率范围内,以 linear, octave 或 decade 模式采样 npts 频率点。
frequency	基础频率
nharm	谐波数量
sweeptype	扫描频率范围是输出的绝对频率还是相对频率
relharmnum	对于 sweeptype=relative,相对频率扫描参考的谐 波
freqaxis	结果是输出与输入频率、输出频率还是输出频率的绝对值
tstab	周期性稳态分析前的瞬态仿真时间。默认值:10 倍驱动源周期
tstabNcycle	
uic	是否使 BTDSim 使用.ic 语句中指定的节点电压来 计算初始瞬态条件,而不是初始 DC 操作点
init	
solver	
maxorder	
osr	
readsoln	
writesoln	
stimuli	用于 hbpxf 分析的 stimuli
readns	包含初始节点集的文件
convergenceLevel	
pssNormBasedJacobianBypass	
pssJacobianBypassNorm	
pssFirstNewtonBypass	
turbo	
savetstab	是否将瞬态分析结果保存在仿真输出文件中
printic	将最终状态保存到文件中
analysisName	.pxf 输出结果的标识符名称
restart	重启选项:•将此选项设置为 yes 以从头开始重新 启动求解过程•将此选项设置为 no 以重新使用来 自前一个扫描点的解作为初始猜测
largeSignalName	大信号分析的标识符名称

1. hbvcopss VCO 专用 HB 语法如下

Usage: .hbvcopss output controlsource=value frequency=value nharm=value < tstab=value uic=0|1 init=value osr=value phaseConstraintMethod=value readsoln=value writesoln=value readns=value convergenceLevel=value pssNormBasedJacobianBypass=value pssJacobianBypassNorm=value pssFirstNewtonBypass=value turbo=value savetstab=0|1 printic=0|1 analysisName=value restart=value >

参数	描述
output	
controlsource	电压或电流源
frequency	基础频率
nharm	谐波数量
tstab	周期性稳态分析前的瞬态仿真时间。默认值:10 倍驱动源周期
uic	是否使 BTDSim 使用.ic 语句中指定的节点电压来 计算初始瞬态条件,而不是初始 DC 操作点
init	
osr	
phaseConstraintMethod	
readsoln	
writesoln	
readns	包含初始节点集的文件
convergenceLevel	
pssNormBasedJacobianBypass	
pssJacobianBypassNorm	
pssFirstNewtonBypass	
turbo	
savetstab	指定是否将瞬态分析结果保存在仿真输出文件
printic	将最终状态保存到文件中
analysisName	hbvcopss 分析结果名称,可以用于后续分析
restart	重启选项:•将此选项设置为 yes 以从头开始重新 启动求解过程•将此选项设置为 no 以重新使用来 自前一个扫描点的解作为初始猜测

1. pss 语法如下

Usage: .pss tperiod=value < npoints=value tstab=value minstep=value uic=0|1 start=value maxstep=value maxacfreq=value errpreset=value pssNormBasedJacobianBypass=value pssJacobianBypassNorm=value pssFirstNewtonBypass=value turbo=value savetstab=0|1 printic=0|1 analysisName=value restart=value relref=value harmsvec=value nharm=value >

参数	描述
tperiod	beat 周期:所有独立来源的最小公倍数
npoints	每个时期的最少时间点数
tstab	周期性稳态分析前的瞬态仿真时间。默认值:10 倍驱动源周期
minstep	最小时间步长
uic	是否使 BTDSim 使用.ic 语句中指定的节点电压来 计算初始瞬态条件,而不是初始 DC 操作点
start	瞬态分析的开始时间
maxstep	最大时间步长
maxacfreq	对于时域分析,您可以使用此选项来限制 pss 分析 中的最大时间步长,并指定后续小信号分析(如 pac、pxf 或 pnoise)中的最大频率
errpreset	选择一组精度设置:•自由将稳定时间后每个周期的点数设置为50•中度将稳定时间后每个周期的点数设置为200•保守将 reltol 的有效值缩小10倍,并将稳定时间后的每个周期的点数设置为200
pssNormBasedJacobianBypass	
pssJacobianBypassNorm	
pssFirstNewtonBypass	
turbo	
savetstab	指定是否将瞬态分析结果保存在仿真输出文件
printic	将最终状态保存到文件中
analysisName	pss 分析结果名称,可以用于后续分析
restart	重启选项:•将此选项设置为 yes 以从头开始重新 启动求解过程•将此选项设置为 no 以重新使用来 自前一个扫描点的解作为初始猜测
relref	控制 AFS 如何确定是否满足相对容错 (reltol) 模拟器选项值: • pointlocal 仅将每个节点的相对误差与拍摄间隔开始和结束时的最大值进行比较。• alllocal 将每个节点的相对误差与快照间隔开始到

参数	描述
	结束的最大波形值进行比较
harmsvec	所需的谐波数组
nharm	谐波数量

1. pnoise 语法如下

Usage: .pnoise output < inputsource > frequencysweep largeSignalName=value < nharm=value sweeptype=value relharmnum=value refsideband=value printnoiseintensity=value stimuli=value analysisName=value onthefly=0|1 >

or .pnoise output < inputsource > frequencysweep tperiod=value < npoints=value nharm=value sweeptype=value relharmnum=value refsideband=value tstab=value minstep=value uic=0|1 start=value printnoiseintensity=value maxstep=value stimuli=value pssNormBasedJacobianBypass=value pssJacobianBypassNorm=value pssFirstNewtonBypass=value turbo=value savetstab=0|1 printic=0|1 analysisName=value restart=value relref=value harmsvec=value onthefly=0|1 >

参数	描述
output	
inputsource	输入参考噪声或噪声系数
frequencysweep	频率扫描模式。一般格式 LIN npts OCT npts DEC npts start_value end_value 表示在[start_value, end_value]频率范围内,以 linear, octave 或 decade 模式采样 npts 频率点。
largeSignalName	大信号分析的标识符名称
nharm	谐波数量
sweeptype	指示扫描频率范围是输出的绝对频率还是相对频 率
relharmnum	对于 sweeptype=relative,相对频率参考的谐波值
refsideband	在计算输入参考噪声或噪声系数时,使用与此边 带相关的转换增益
printnoiseintensity	打印噪音强度
stimuli	
onthefly	内存和性能之间的权衡:对非常大的电路使用值1 以使用更少的内存,但运行时间更长;默认值0使 用更多内存,但运行时间更快
tperiod	beat 周期,这是所有独立来源的最小公倍数

参数	描述
npoints	每个时期的最少时间点数
tstab	周期性稳态分析前的瞬态仿真时间。默认值:10 倍驱动源周期
minstep	最小时间步长
uic	是否使 BTDSim 使用.ic 语句中指定的节点电压来 计算初始瞬态条件,而不是初始 DC 操作点
start	瞬态分析的开始时间
maxstep	最大时间步长
pssNormBasedJacobianBypass	
pssJacobianBypassNorm	
pssFirstNewtonBypass	
turbo	
savetstab	是否将瞬态分析结果保存在仿真输出文件中
printic	将最终状态保存到文件中
analysisName	.pnoise 输出结果的标识符名称
restart	重启选项:•将此选项设置为 yes 以从头开始重新 启动求解过程•将此选项设置为 no 以重新使用来 自前一个扫描点的解作为初始猜测
relref	控制 AFS 如何确定是否满足相对容错 (reltol) 模拟器选项值: • pointlocal 仅将每个节点的相对误差与拍摄间隔开始和结束时的最大值进行比较。• alllocal 将每个节点的相对误差与快照间隔开始到结束的最大波形值进行比较
harmsvec	所需打印的谐波数组

1. pac 语法如下

Usage: .pac frequencysweep largeSignalName=value < nharm=value sweeptype=value relharmnum=value freqaxis=value sidebands=value stimuli=value analysisName=value onthefly=0|1 >

or .pac frequencysweep tperiod=value < npoints=value nharm=value sweeptype=value relharmnum=value freqaxis=value sidebands=value tstab=value minstep=value uic=0|1 start=value maxstep=value stimuli=value pssNormBasedJacobianBypass=value pssJacobianBypassNorm=value pssFirstNewtonBypass=value turbo=value savetstab=0|1 printic=0|1 analysisName=value restart=value relref=value harmsvec=value onthefly=0|1 >

参数	描述
frequencysweep	频率扫描模式。一般格式 LIN npts OCT npts DEC npts start_value end_value 表示在[start_value, end_value]频率范围内,以 linear, octave 或 decade 模式采样 npts 频率点。
largeSignalName	大信号分析的标识符名称
nharm	谐波数量
sweeptype	指示扫描频率范围是输入的绝对频率还是相对频 率
relharmnum	对于 sweeptype=relative,相对频率所参考的谐波 值
freqaxis	结果是输出与输入频率、输出频率还是输出频率 的绝对值
sidebands	用于分析的相关边带阵列
stimuli	
analysisName	.pac 分析的标识符名称
onthefly	内存和性能之间的权衡。对非常大的电路使用值1 以使用更少的内存,但运行时间更长。默认值0 使用更多内存,但运行时间更快。
tperiod	beat 周期,是所有独立源的最小公倍数
npoints	每个周期的最小时间点数
tstab	周期性稳态分析前的瞬态仿真时间。默认值:10 倍驱动源周期
minstep	瞬态分析中使用的最小时间步长
uic	是否使 BTDSim 使用.ic 语句中指定的节点电压来 计算初始瞬态条件,而不是初始 DC 操作点
start	瞬态分析的开始时间
maxstep	瞬态分析中使用的最大时间步长
pssNormBasedJacobianBypass	
pssJacobianBypassNorm	
pssFirstNewtonBypass	
turbo	
savetstab	是否将瞬态分析结果保存在仿真输出文件中
printic	将最终状态保存到文件中
restart	重启选项:•将此选项设置为 yes 以从头开始重新 启动求解过程•将此选项设置为 no 以重新使用来

参数	描述
	自前一个扫描点的解作为初始猜测
relref	控制 AFS 如何确定是否满足相对容错 (reltol) 模拟器选项值: • pointlocal 仅将每个节点的相对误差与拍摄间隔开始和结束时的最大值进行比较。• alllocal 将每个节点的相对误差与快照间隔开始到结束的最大波形值进行比较
harmsvec	所需打印的谐波数组

1. pxf 语法如下

Usage: .pxf output frequencysweep largeSignalName=value < nharm=value sweeptype=value relharmnum=value freqaxis=value sidebands=value smallSignalMethod=value stimuli=value analysisName=value onthefly=0|1 >

or .pxf output frequencysweep tperiod=value < npoints=value nharm=value sweeptype=value relharmnum=value freqaxis=value sidebands=value smallSignalMethod=value tstab=value minstep=value uic=0|1 start=value maxstep=value stimuli=value pssNormBasedJacobianBypass=value pssJacobianBypassNorm=value pssFirstNewtonBypass=value turbo=value savetstab=0|1 printic=0|1 analysisName=value restart=value relref=value harmsvec=value onthefly=0|1 >

参数	描述
output	
frequencysweep	频率扫描模式。一般格式 LIN npts OCT npts DEC npts start_value end_value 表示在[start_value, end_value]频率范围内,以 linear, octave 或 decade 模式采样 npts 频率点。
largeSignalName	大信号分析的标识符名称
nharm	谐波数量
sweeptype	扫描频率范围是输出的绝对频率还是相对频率
relharmnum	对于 sweeptype=relative,相对频率扫描参考的谐 波
freqaxis	结果是输出与输入频率、输出频率还是输出频率 的绝对值。
sidebands	用于分析的相关边带阵列
smallSignalMethod	
stimuli	用于 pxf 分析的 stimuli

参数	描述
analysisName	pxf 分析结果名称,可以用于后续分析
onthefly	内存和性能之间的权衡:对非常大的电路使用值1 以使用更少的内存,但运行时间更长;默认值0使 用更多内存,但运行时间更快
tperiod	稳态周期初始值
npoints	每个时期的最少时间点数
nharm	谐波数量
tstab	周期性稳态分析前的瞬态仿真时间。默认值:10 倍驱动源周期
minstep	最小时间步长
uic	是否使 BTDSim 使用.ic 语句中指定的节点电压来 计算初始瞬态条件,而不是初始 DC 操作点
start	瞬态分析的开始时间
maxstep	最大时间步长
pssNormBasedJacobianBypass	
pssJacobianBypassNorm	
pssFirstNewtonBypass	
turbo	
savetstab	是否将瞬态分析结果保存在仿真输出文件中
printic	是否将最终状态保存到文件中
restart	重启选项:•将此选项设置为 yes 以从头开始重新 启动求解过程•将此选项设置为 no 以重新使用来 自前一个扫描点的解作为初始猜测
relref	控制 AFS 如何确定是否满足相对容错 (reltol) 模拟 器选项值: • pointlocal 仅将每个节点的相对误差 与拍摄间隔开始和结束时的最大值进行比较。• alllocal 将每个节点的相对误差与快照间隔开始到 结束的最大波形值进行比较
harmsvec	所需打印的谐波数组

1. qpss: 多频率 hb, 语法如下(对 netlist 有要求)

Usage: .qpss < funds=value nharm=value > analysisName=value < tstab=value savetstab=0|1 type=value harmonicbalance=value frequency=value init=value maxstep=value restart=value tstabNcycle=value maxorder=value osr=value reltol=value vntol=value abstol=value chgtol=value maxiter=value maxiter_dc=value newtonsolvemethod=value gmin=value dcmethod=value pseudotranRefine=value force=value readns=value readforce=value recover=value write=value save=value maxsteps=value itl4=value trtol=value stepratio=value upstepratio=value method=value cmin=value writeFinal=value saveFile=value errpreset=value usegmresintran=value strobeperiod=value strobedelay=value skipcount=value skipstart=value skipstop=value convergenceLevel=value pssNormBasedJacobianBypass=value pssJacobianBypassNorm=value pssFirstNewtonBypass=value turbo=value savetstab=0|1 printic=0|1 analysisName=value restart=value >

参数	描述
funds	替代周期规范,稳态分析基频
nharm	谐波数量
analysisName	qpss 分析结果名称,可以用于后续分析
tstab	周期性稳态分析前的瞬态仿真时间。默认值:10 倍驱动源周期
savetstab	是否将瞬态分析结果保存在仿真输出文件中
type	
harmonicbalance	
frequency	基础频率
init	
maxstep	最大时间步长
restart	重启选项:•将此选项设置为 yes 以从头开始重新 启动求解过程•将此选项设置为 no 以重新使用来 自前一个扫描点的解作为初始猜测
tstabNcycle	
maxorder	
osr	
reltol	相对收敛精度
vntol	电压收敛精度
abstol	绝对收敛精度
chgtol	设置所有电容的绝对和相对电荷容差
maxiter	最大牛顿迭代次数。默认值 10
maxiter_dc	DC 中最大牛顿迭代次数。默认值 100
newtonsolvemethod	牛顿迭代方法
gmin	最小接地电导值
dcmethod	DC 收敛方法

参数	描述
pseudotranRefine	
force	强制 DC 值的方法
readns	包含初始节点集的文件
readforce	与 force 结合使用,包含用 force 值的初始条件文件
recover	
write	在稳态分析之前写入最终瞬态解决方案的文件
save	输出信号
maxsteps	最大时间步长
itl4	指定瞬态分析的最大时间步长
trtol	时间步长截截泰勒级数展开时进入的估计
stepratio	
upstepratio	
method	
cmin	每个节点到地的最小电容
writeFinal	在稳态分析中编写收敛解的文件
saveFile	写入保存状态的文件名
errpreset	选择一组精度设置:•自由将稳定时间后每个周期的点数设置为 50•中度将稳定时间后每个周期的点数设置为 200•保守将 reltol 的有效值缩小 10 倍,并将稳定时间后的每个周期的点数设置为 200
usegmresintran	如果 usegmresintran=1,则在瞬态分析的每个时间步的某些迭代中,使用 GMRES 作为线性求解器而不是 LU 分解
strobeperiod	指定1以在指定的时间间隔内插入输出,以牺牲准 确性为代价加快模拟速度
strobedelay	在 skipstart 和第一个 strobeperiod 开始之间的延迟
skipcount	仅保存每 N 第个数据点,其中 N 是 skipcount 的 整数值
skipstart	开始应用 strobedelay 或 skipcount 选项的模拟时 间
skipstop	停止应用 strobedelay 或 skipcount 选项的模拟时间
convergenceLevel	

参数	描述
pssNormBasedJacobianBypass	
pssJacobianBypassNorm	
pssFirstNewtonBypass	
turbo	
savetstab	是否将瞬态分析结果保存在仿真输出文件中
printic	是否将最终状态保存到文件中
analysisName	qpss 分析结果名称,可以用于后续分析

1. qpnoise 语法如下

Usage: .qpnoise < output largeSignalName=value > analysisName=value < inputsource clockmaxharm=value sweeptype=value relharmvec=value refsideband=value values=value start=value stop=value center=value span=value step=value lin=value dec=value log=value >

参数	描述
output	
largeSignalName	大信号分析的标识符名称
analysisName	qpnoise 分析结果名称,可以用于后续分析
inputsource	
clockmaxharm	
sweeptype	扫描频率范围是输出的绝对频率还是相对频率
relharmvec	
refsideband	计算输入参考噪声或噪声系数时,使用与此边带相关的转换增 益
values	扫频值数组
start	开始扫频限制
stop	停止扫频限制
center	扫频中心
span	扫频极限跨度
step	线性扫频的步长
lin	线性扫频的步数
dec	Points per decade
log	扫描对数的步数

1. qpxf 语法如下

Usage: .qpxf < output > largeSignalName=value analysisName=value < clockmaxharm=value sweeptype=value relharmvec=value freqaxis=value stimuli=value values=value start=value stop=value center=value span=value step=value lin=value dec=value log=value >

参数	描述
output	
largeSignalName	大信号分析的标识符名称
analysisName	
clockmaxharm	
sweeptype	指示扫描频率范围是输入的绝对频率还是相对频率
relharmvec	
freqaxis	结果是输出与输入频率、输出频率还是输出频率的绝对值
stimuli	
values	扫频值数组
start	开始扫描限制
stop	停止扫描限制
center	扫频中心
span	扫频极限跨度
step	线性扫频步长
lin	线性扫频的步数
dec	Points per decade
log	扫描对数的步数

1. qpac 语法如下

Usage: .qpac < largeSignalName=value > analysisName=value < clockmaxharm=value sweeptype=value relharmvec=value freqaxis=value stimuli=value values=value start=value stop=value center=value span=value step=value lin=value dec=value log=value >

参数	描述
largeSignalName	大信号分析的标识符名称
analysisName	qpac 分析的标识符名称
clockmaxharm	
sweeptype	指示扫描频率范围是输入的绝对频率还是相对频率
参数	描述
--------------	---------------------------
clockmaxharm	
freqaxis	结果是输出与输入频率、输出频率还是输出频率的绝对值
stimuli	
values	扫频值数组
start	开始扫描限制
stop	停止扫描限制
center	扫频中心
span	扫频极限跨度
step	线性扫频的步长
lin	线性扫频的步数
dec	Points per decade
log	扫描对数的步数

1. envlp 语法如下

Usage: .envlp stop=value < clockname=value frequency=value nharm=value start=value outputstart=value maxorder=value osr=value analysisName=value uic=0|1 init=value maxstep=value envmaxstep=value modulationbw=value resolutionbw=value envmaxiters=value type=value tstab=value savetstab=0|1 outputharms=value harmsvec=value outputtype=value harmonicbalance=value readns=value convergenceLevel=value pssNormBasedJacobianBypass=value pssJacobianBypassNorm=value pssFirstNewtonBypass=value turbo=value savetstab=0|1 printic=0|1 analysisName=value restart=value >

参数	描述
stop	
clockname	时钟名称
frequency	基础频率
nharm	谐波数量
start	
outputstart	到达指定时间后保存输出
maxorder	
osr	
analysisName	
uic	是否使 BTDSim 使用.ic 语句中指定的节点电压来 计算初始瞬态条件,而不是初始 DC 操作点

参数	描述
init	
maxstep	最大时间步长
envmaxstep	
modulationbw	
resolutionbw	
envmaxiters	
type	
tstab	周期性稳态分析前的瞬态仿真时间。默认值:10 倍驱动源周期
savetstab	是否将瞬态分析结果保存在仿真输出文件中
outputharms	输出谐波
harmsvec	所需打印的谐波数组
outputtype	输出类型
harmonicbalance	
readns	包含初始节点集的文件
convergenceLevel	
pssNormBasedJacobianBypass	
pssJacobianBypassNorm	
pssFirstNewtonBypass	
turbo	
printic	是否将最终状态保存到文件中
restart	重启选项: •将此选项设置为 yes 以从头开始重新 启动求解过程•将此选项设置为 no 以重新使用来 自前一个扫描点的解作为初始猜测

1. vcopss 语法如下

Usage: .vcopss output controlsource=value tperiod=value < npoints=value tstab=value uic=0|1 start=value maxstep=value pssNormBasedJacobianBypass=value pssJacobianBypassNorm=value pssFirstNewtonBypass=value turbo=value savetstab=0|1 printic=0|1 analysisName=value restart=value relref=value harmsvec=value highq=0|1 nharm=value >

参数	描述

output

参数	描述
controlsource	电压或电流源
tperiod	beat 周期:所有独立来源的最小公倍数
npoints	每个时期的最少时间点数
tstab	周期性稳态分析前的瞬态仿真时间。默认值:10 倍驱动源周期
uic	是否使 BTDSim 使用.ic 语句中指定的节点电压来 计算初始瞬态条件,而不是初始 DC 操作点
start	初始瞬态分析开始时间
maxstep	最大时间步长
pssNormBasedJacobianBypass	
pssJacobianBypassNorm	
pssFirstNewtonBypass	
turbo	
savetstab	指定是否将瞬态分析结果保存在仿真输出文件中
	(1=yes)
printic	将最终状态保存到文件中
analysisName	vcopss 分析结果名称,可以用于后续分析
restart	重启选项:•将此选项设置为 yes 以从头开始重新 启动求解过程•将此选项设置为 no 以重新使用来 自前一个扫描点的解作为初始猜测
relref	控制 AFS 如何确定是否满足相对容错 (reltol) 模拟器选项值: • pointlocal 仅将每个节点的相对误差与拍摄间隔开始和结束时的最大值进行比较。• alllocal 将每个节点的相对误差与快照间隔开始到结束的最大波形值进行比较
harmsvec	所需打印的谐波数组
highq	在模拟高Q晶体振荡器时,将此选项设置为1以 获得更高的精度。对于普通环形振荡器和低Q谐 振振荡器,将其设置为0
nharm	pss 频谱中要输出的谐波数量

1. oscpss 语法如下

Usage: .oscpss output tperiod=value < npoints=value tstab=value uic=0|1 start=value maxstep=value pssNormBasedJacobianBypass=value pssJacobianBypassNorm=value pssFirstNewtonBypass=value turbo=value savetstab=0|1 printic=0|1 analysisName=value restart=value relref=value
harmsvec=value highq=0|1 nharm=value >

参数	描述
output	
tperiod	beat 周期:所有独立来源的最小公倍数
npoints	每个时期的最少时间点数
tstab	周期性稳态分析前的瞬态仿真时间。默认值:10 倍驱动源周期
uic	是否使 BTDSim 使用.ic 语句中指定的节点电压来 计算初始瞬态条件,而不是初始 DC 操作点
start	初始瞬态分析开始时间
maxstep	最大时间步长
pssNormBasedJacobianBypass pssJacobianBypassNorm pssFirstNewtonBypass	
turbo	
savetstab	是否将瞬态分析结果保存在仿真输出文件中
printic	将最终状态保存到文件中
analysisName	oscpss 分析结果名称,可以用于后续分析
restart	重启选项:•将此选项设置为 yes 以从头开始重新 启动求解过程•将此选项设置为 no 以重新使用来 自前一个扫描点的解作为初始猜测
relref	控制 AFS 如何确定是否满足相对容错 (reltol) 模拟器选项值: • pointlocal 仅将每个节点的相对误差与拍摄间隔开始和结束时的最大值进行比较。• alllocal 将每个节点的相对误差与快照间隔开始到结束的最大波形值进行比较
harmsvec	所需打印的谐波数组
highq	在模拟高Q晶体振荡器时,将此选项设置为1以获得更高的精度。对于普通环形振荡器和低Q谐振振荡器,将其设置为0
nharm	pss 频谱中要输出的谐波数量

1. oscnoise 语法如下

Usage:.oscnoise frequencysweep largeSignalName=value < percentnoiseatoffset=value analysisName=value highq=0|1 eigenInitialSize=value totalNoise=value >

Or .oscnoise output frequencysweep tperiod=value < npoints=value tstab=value uic=0|1 start=value percentnoiseatoffset=value maxstep=value pssNormBasedJacobianBypass=value pssJacobianBypassNorm=value pssFirstNewtonBypass=value turbo=value savetstab=0|1 printic=0|1 analysisName=value restart=value relref=value harmsvec=value highq=0|1 eigenInitialSize=value totalNoise=value >

frequencysweep	频率扫描模式。一般格式 LIN npts OCT npts DEC npts start_value end_value 表示在[start_value, end_value]频率范围内,以 linear, octave 或 decade 模式采样 npts 频率点。
largeSignalName	大信号分析结果的标识符名称
percentnoiseatoffset	打印百分比噪声贡献者的偏移频率列表
analysisName	.oscnoise 输出结果的标识符名称
highq	对于晶体振荡器,将此选项设置为1;对于普通环 形振荡器和低Q谐振振荡器,将其设置为0
eigenInitialSize	
totalNoise	
output	输出节点
tperiod	所需的振荡周期
npoints	每个时期的最少时间点数
tstab	周期性稳态分析前的瞬态仿真时间。默认值:10 倍驱动源周期
uic	是否使 BTDSim 使用.ic 语句中指定的节点电压来 计算初始瞬态条件,而不是初始 DC 操作点
start	瞬态分析的开始时间
maxstep	最大时间步长
pssNormBasedJacobianBypass	
pssJacobianBypassNorm	
pssFirstNewtonBypass	
turbo	
savetstab	指定是否将瞬态分析结果保存在仿真输出文件中
printic	将最终状态保存到文件中
restart	重启选项: •将此选项设置为 yes 以从头开始重新 启动求解过程•将此选项设置为 no 以重新使用来

frequencysweep	频率扫描模式。一般格式 LIN npts OCT npts DEC npts start_value end_value 表示在[start_value, end_value]频率范围内,以 linear, octave 或 decade 模式采样 npts 频率点。
	自前一个扫描点的解作为初始猜测
relref	控制 AFS 如何确定是否满足相对容错 (reltol) 模拟器选项值: • pointlocal 仅将每个节点的相对误差与拍摄间隔开始和结束时的最大值进行比较。• alllocal 将每个节点的相对误差与快照间隔开始到结束的最大波形值进行比较
harmsvec	所需打印的谐波数组