

MxSim-Mechanical 通用结构分析

使用指南

--软件基础操作

文件编号: 001

编制:_____

审核:_____

批准:_____

2022年06月

目录

一、MxSim-Mechanical 基础	.1
1.1 用户界面	. 1
1.1.1 标题栏	. 1
1.1.2 菜单栏	. 1
1.1.3 快捷工具栏	. 2
1.1.4 模型树	. 2
1.1.5 参数栏	. 2
1.1.6 图形区	. 3
1.1.7 主面板工具栏	. 3
1.1.8 主面板工具菜单	.4
1.1.9 信息栏	.4
1.1.10 命令行	.4
1.2 模型操作	. 4
1.2.1 模型操作	.4
1.2.1.1 旋转模型	.4
1.2.1.2 平移模型	.4
1.2.1.3 缩放模型	. 5
1.2.2 模型拾取	. 5
1.2.2.1 点选	. 5
1.2.2.2 框选	. 5
1.2.3 几何拾取	. 5
1.2.3.1 拾取对象	. 5
1.2.3.2 拾取方式	. 5
1.3 单位的统一	. 5
1.4 模型的管理	. 6
1.4.1 几何模型	.6
1.4.2 有限元模型	. 7
1.4.3 后处理视窗	. 8
1.4.4 网格模型	. 8
1.5 视窗与显示	. 9
1.5.1 视窗	. 9
1.5.2 显示控制	10
1.5.3 窗口的显示/隐藏	10
1.6 主面板快捷工具栏	11
1.6.1 集合工具	11
1.6.2 曲线工具	11
1.6.3 复合材料创建工具	12
1.6.4 坐标系工具	12
1.6.5 刚体动力学辅助工具	13
1.6.5.1 刚体创建工具	13
1.6.5.2 刚体约束工具	13

	1.6.5.3 刚体连接工具(运动副)	.14
	1.6.6 工具面板	. 14
	1.6.6.1 显示编号	.15
	1.6.6.2 查询	. 15
	1.6.6.3 临时节点	.15
	1.6.6.4 隐藏	. 16
	1.6.6.5 测量	. 16
	1.6.6.6 搜索接触对	.16
<u> </u>	几何建模或导入	. 17
2.1	几何建模	. 17
	2.1.1 创建几何点	.17
	2.1.1.1 通过坐标创建几何点	.17
	2.1.1.2 通过圆心/弧心创建几何点	.18
	2.1.1.3 通过 U 参数创建几何点	.18
	2.1.2 创建几何线	. 18
	2.1.2.1 两点坐标创建几何线	.18
	2.1.2.2 通过拾取己有几何点创建多线段	.19
	2.1.2.3 通过拉伸节点创建几何线	.19
	2.1.2.4 通过圆心&半径/三点创建圆弧线	19
	2.1.2.5 通过拾取几何边界创建几何线	.20
	2.1.2.5 通过偏置已有几何边界创建几何线	.20
	2.1.3 创建几何面	.21
	2.1.3.1 几何平面	.21
	2.1.3.2 圆柱面	.21
	2.1.3.3 圆台面	.21
	2.1.3.4 球面	.22
	2.1.3.5 圆环面	.22
	21.3.6 旋转面	.23
	2.1.3.7 拉伸面	.23
	2138 填充面	.24
	2.1.4 创建几何体	.24
	2.1.4.1 立方体(长方体)	.25
	2142 圆柱体	25
	2143 圆台	26
	2144 球体	26
	2145 圆环体	27
	21146 回转体	27
	2147 拉伸成体	28
2.2	导入模型	.28
	2.2.1 导入几何	.28
	2.2.2 导入计算文件	.29
	2.2.3 导入结果文件	.29
	2.2.4 导入网格文件	.29
三、	网格划分	. 30
		-

3.1	线剖分	. 30
3.2	面剖分	. 31
3.3	实体剖分	. 31
3.4	局部网格控制	. 32
3.5	创建节点	. 33
3.6	创建网格	. 33
3.7	提取表面网格	. 34
3.8	粒子生成	. 34
3.9	拉伸	.35
四、	材料定义	. 36
4.1	弹性材料参数设置	. 36
4.2	常规塑性材料参数设置	.37
4.3	超弹性材料参数设置	. 38
4.4	刚体材料参数设置	. 38
4.5	压电材料	. 39
五、	截面属性	. 39
5.1	截面属性创建与赋予	.40
	5.1.1 1D 杆/梁单元的截面创建	.40
	5.1.1.1 梁截面工具-MXBeam	.40
	5.1.1.2 杆单元截面属性创建	.41
	5.1.1.3 梁单元截面属性创建	.41
	5.1.2 2D 单元的截面属性创建	.42
	5.1.2.1 壳单元的截面属性创建	.42
	5.1.2.2 平面应力/应变单元/剪切板的截面属性创建	. 42
	5.1.2.3 实体单元的截面属性创建	.42
	5.1.2.4 弹簧单元的截面属性创建	.43
5.2	截面属性赋予	.43
六、	单元类型的定义与关联	.43
6.1	杆单元	. 44
6.2	梁单元	. 44
6.3	平面应变单元	.45
6.4	平面应力单元	.45
6.5	壳单元	.46
6.6	剪切板单元	. 46
6.7	三维实体单元	. 47
6.8	质量单元	. 47
6.9	弹簧	. 48
七、	定义分析工况	. 48
7.1	工况名称	. 48
7.2	工况描述	. 48
7.3	分析类型	. 49
7.4	分析工况定义	. 49
	7.4.1 线性静态分析	. 50
	7.4.2 非线性静态分析	. 50

7.4.3 模态分析	
7.4.4 线性瞬态分析	
7.4.4.1 模态叠加法	
7.4.4.2 直接积分法	
7.4.5 线性频响分析	
7.4.5.1 线性频响分析(模态法)	
7.4.5.2 线性频响分析(直接法)	
7.4.6 随机振动分析	
7.4.7 响应谱分析	
7.4.8 稳态传热分析	
7.4.9 线性瞬态传热分析	
7.4.10 非线性瞬态传热分析	
八、定义载荷	
8.1 集中力	
8.2 力矩	
8.3 重力	
8.4 压强	
8.5 瞬态载荷	
8.6 频域载荷	
8.7 线载荷	58
8.8 预紧力	
8.9 热流密度	
8.10 对流换热载荷	60
8.11 温度载荷	
8.12 内部热源	61
8.13 申荷	
8.14 电荷密度	62
九、施加约束	62
91 固定/对称/反对称约束	62
92 位移/转角	63
9.3 虚拟约束	63
94初始边界条件	64
95温度边界	64
96 由势	64
十、 连接	65
十一、 接触	65
111 占对面接触	66
11.2 面对面接触	66
+ ⁻ 、求解	
121 输出设置	
1211场变量输出	
12.1.1 勿又至間山	
12.1.2 /// 入文王	
+= 拓扑伏化	۵۵ ۶۶
I Y JH JI VU RU	

十四、后处理	69
14.1 云图窗口	70
14.1.1 位移变量	71
14.1.2 应力变量	71
14.1.3 后处理云图设置-层	71
14.2 变形图	72

一、MxSim-Mechanical 基础

本部分主要介绍 MxSim 软件的用户界面,介绍 MxSim 的菜单、鼠标快捷操作、视图控制、单位制及模型管理。

1.1 用户界面

1.1.1 标题栏

标题栏中显示当前 MxSim 的版本号、将要进行工作所属的模块以及当前所 处数据库的名称。

➢ MxSimV1.0-beta-通用结构分析 - [前处理]							
文件	视口	视图	显示	前处理	后处理	工具	帮助
	4 8		3		"+ ₃		0 0

1.1.2 菜单栏

菜单栏包含了 MxSim 所有可用菜单,点击后出现的下拉项可以访问产品中 所有的功能。

1.1.3 快捷工具栏

快捷工具栏为常用功能提供快捷操作工具,如文件、视窗、几何模型选择等, 方便用户使用。

<mark>▶</mark> MxSimV1.0-beta-通用结构分析 - [前处理]	
文件 视口 视图 显示 前处理 后处理 工具 帮助	

1.1.4 模型树

模型树提供了模型及其所包含的对象的图形概述,按照完整的分析流程来进行分层。如前处理中所包含模型、材料、属性、工况、连接、载荷/约束、输出请求等内容,后处理中包含所计算的工作内容。

此外,"模型树"还提供了一种便捷的集中式工具,用于直接管理各分析流程中的对象。

1.1.5 参数栏

参数栏能直接细致的显示出当前对象的属性信息。

参数	0 ×	
名称	值	
当前帧	1	
总帧数	20	
节点总数	101232	
单元总数	314549	
离散阶数	18	
默认最大值	108.747	
默认最小值	0	

1.1.6图形区

图形区可用于对当前分析的模型进行图形展示或在图形窗口中对模型进行 一系列分析操作。

1.1.7 主面板工具栏

主面板工具栏按照基本分析流程将分析工具按顺序排列,点击主面板功能工具,会在主面板工具菜单展开相应的工具。

💼 🗐 h: I 🕺 🐲 😃 🥔 I 🗞 G= 🍞 😨 🎕 🛄 h: 🚍 L 🔵 🕕 🕶

迈曦软件

主面板工具菜单展示了对应工具栏的展开功能及详细的操作选项。

🗐 🗊 🗠 I 🛸 👐 😃	🥏 🔚 🗞 Go 🔊 😨 🎕	k 🔲 📐 🥔 🛃 🛄 🔿		
8 几何 3 几何点	线	面	实体	快捷编辑
	线编辑	面编辑	实体编辑	边编辑
		册都余特征	肋板	几何点编辑
		抽中面		自动几何清理
		尺寸标注		

1.1.9 信息栏

信息栏显示了分析求解过程中具体进程的信息(进程、警告、错误等信息)。

1.1.10 命令行

命令行中可以查看具体操作步骤及完成情况,用户也可以在命令行界面键入 Python 操作命令。

1.2 模型操作

1.2.1 模型操作

1.2.1.1旋转模型

按住并拖动"鼠标左键";

1.2.1.2平移模型

按住并拖动"鼠标右键";

1.2.1.3缩放模型

滚动"鼠标中键";

迈曦软件

1.2.2 模型拾取

1.2.2.1 点选

按键盘 Ctrl 键+拖动"鼠标左/右键"

1.2.2.2框选

按键盘 Shift 键+拖动"鼠标左/右键"

1.2.3 几何拾取

1.2.3.1 拾取对象

节点、网格、网格边、网格面、零件

1.2.3.2拾取方式

鼠标拾取、通过边、通过面、通过零件、通过 ID 号、全部拾取

1.3 单位的统一

单位类别	SI	SI (mm)	美制 (ft)	美制(inch)
长度	m	mm	ft	in
力	Ν	Ν	lbf	lbf
质量	kg	ton	slug	lbf s² /in
时间	S	S	S	S
压力	Pa (N/m ²)	MPa (N/mm ²)	lbf/ft ²	psi(lbf/in²)
密度	kg/m ³	ton/mm ³	slug/ft ³	$lbf s^2 / in^4$

1.4 模型的管理

同主流的通用有限元软件一样,MxSim的模型分为几何模型、有限元模型和后处理模型。

MxSim支持新建简单几何、导入外部几何和有限元模型文件、导出为常用格式的外部有限元模型文件。

目前仅支持同时打开一个MxSim工程,一个工程包含一个几何/有限元模型视窗和一个后处理视窗。在一个MxSim工程中,导入的外部几何模型(支持导入多个)和导入的有限元模型(计算文件)会显示在几何/有限元模型视窗(支持导入多个),导入的后处理文件则直接显示在后处理视窗。

1.4.1 几何模型

如同其它 CAE 软件, MxSim 支持简单几何的建模,如简单的几何点、线、 面、体等,目前仅支持创建简单的几何 Part。MxSim 支持导入第三方 CAD 软件 创建好的模型,目前支持(*.step)和(*.iges)格式,可以直接导入 MxSim 使用。

>> 导入		?	×
类型 几何文件			
• All			
O STEP			
文件		浏览	
	导入	取消	
	00	0 000	

1.4.2 有限元模型

有限元模型一般包含网格信息、材料属性、连接关系、边界条件等信息的模型。除了导入MxSim自身的有限元文件(*.mx)外,MxSim还支持导入当前主流的第三方有限元模型,目前有:Nastran(*.bdf)、OptiStruct(*.fem)、Ansys(*.cdb)、Abaqus(*.inp)。

1.4.3 后处理视窗

目前仅支持导入MxSim的计算结果文件(.mxdb),导入后可以使用MxSim对结果文件进行后处理。

<mark>≫</mark> 导入	?	×
类型结果文件		•
) MxSim Database(*.mxd	b)	
文件		刘览
	□ 导入 1	取消
	2.00.00	

1.4.4 网格模型

MxSim在前处理阶段可对模型进行线、面、实体等对象进行网格剖分,也可 支持导入第三方网格模型,目前有:Nastran(*.bdf)、OptiStruct(*.fem)、Ansys(*.cdb)、 Abaqus(*.inp)、LsDyna(*.k)、Mesh File(*.msh)。

1.5 视窗与显示

1.5.1 视窗

为了明确区分操作对象模型,MxSim分别采用不同的视窗来分别 显示几何模型/有限元模型和后处理视图,成功完成求解后会自动跳至 后处理视窗,也可以通过在模型树顶端点击"前处理"/"后处理"切 换显示视窗。

1.5.2 显示控制

1.5.3 窗口的显示/隐藏

在工具栏、模型树、参数栏等窗口处右键单击可调出窗口显示工具,点击各 窗口左侧的选择按钮,可以进行窗口的显示及隐藏。

1.6 主面板快捷工具栏

分析辅助工具,包含单元集合、曲线、复合材料铺层、坐标系、 刚体、刚体约束、刚体连接等工具。

l 🛞 🔳 📐 🥔 🕖 🕶

1.6.1 集合工具

用于创建单元(节点、单元线、单元面、单元体等)集合。

🕸 🔲 📐 🥃 🛴 🔘 🐽

1.6.2 曲线工具

对于动力学分析,一般需要施加随时间/频率变化的载荷/位移边界, 使用曲线工具来辅助完成。

				寺手动车	俞入数据	>> 曲线图	? ×	
	曲线列表	新建	更新 序号	X值	Y值 🔺 🍿 返回主面			2
曲线名	类型	名称 Curve_2	❷ 1		a +	5月 亚方		
Curve_1	光滑曲线	类型 线性曲线			10	◎	-	
Curve_2	对数曲线	①新建曲线,可自	3 2		20	40 -		
-		定义曲线名	2	-		, I		
		线性曲线	导入数据	导出数	暖 显示曲线 🕨 🦳 确 定	30 -	No. of the second secon	
		光滑曲线	四大持	Βλ	⑥点确远	2完成曲线创建		
		对数曲线		、新加	④也可将数据导出			
					为txt文本	10 10 10 10 10 10 10 10 10 10 10 10 10 1		
		②选择曲线拟合为	元			1 2	3 4 5 6	
			*		▶ 导出数据			<u> </u> ×
▶ 导入数据				×	$\leftarrow \rightarrow \vee \uparrow \blacksquare \ll 00$)M > MxSimTest > 🗸 で) ク 搜索"MxSimTest"	
← → × ↑	≪ 00M > MxSim	Test ≻ ✓ Ŭ	⊘ 搜索"MxSimTest"		组织 ▼ 新建文件夹		₿E ▼	0
组织 • 新建文	件夹		8 • II	0	♪ 音乐 ^	名称 个	修改日期	类型
📕 视频	^ 名称	^	修改日期	类型	三 桌面	Contact	2021/10/29 9:08	文件
📰 图片	Contac	t	2021/10/29 9:08	文件	🐛 Windows (C:)	🧵 demo	2021/10/29 9:05	文件
🖹 文档	📕 demo		2021/10/29 9:05	文件	新加卷 (D:)	📕 Implicit	2021/10/29 9:16	文件
🖊 下载	📕 Implicit		2021/10/29 9:16	文件	🧳 网络	MxSim.txt	2021/12/24 14:39	文本.
♪ 音乐	MxSim	.txt	2021/12/24 14:39	文本;	v	<		>
🛄 桌面	~ <			>	文件名(<u>N</u>): curve	e		~
	文件名(N)·	J	Text File/* tyt)	~	保存类型(I): Text	File(*.txt)		~
		` [
			打开(O) 取消		▲ 隐藏文件夹		保存(<u>S</u>) 取消	i i

1.6.3 复合材料创建工具

通过复合材料工具来创建复合材料铺层。

1.6.4 坐标系工具

施加按函数规律变化的载荷、结果后处理等场合经常会用到局部 坐标系,使用 MxSim 的坐标系工具可以创建需要的局部坐标系。

- 🐼 🔳 📐 🥔 🚺 👄

1.6.5 刚体动力学辅助工具

使用 MxSim 也可以进行刚体动力学分析,支持刚体及参数的创建、 刚体运动自由度的设置、运动副的创建等。

1.6.5.1 刚体创建工具

刚体约束列表	新建	更新	工况		刚体约束类型	✔ U1 0	过渡 6
约束名 类型	名称 RC_1	(1) 🕴 s	tatic_1 (2	位移/转角 ③	✓ U2 0	BigidBody 1
RC_1 位移/转角 ①新建刚体约束,可I ②洗择刚体约束关联的	自定义名称 り"工况"(第	需提前创建	分析工况)			▼ U 3 0 (4) UR1 UR2 UR3 曲线 予覧	RigidBody_2 RigidBody_3
③刚体约束类型选择, ④选择需要约束的刚化 分别对应三个坐标系; ⑤对于时变位移支持; ⑥利用过滤选择刚体 ⑦点"确定"完成刚体 ⑧刚体约束列表中显示	目前默认"(本自由度(U1 方向的平动和纳 选择已创建的 名称 名称 本约束的创建 示已创建的刚体	位移/转角" ~U3, UR [:] 转动) "曲线" 本约束	1~UR3	大型 全部 名称 Curve_1 Curve_2	+ 1,000 800 400 0 0 200 0 0 200 0	? ×	返回主重板 ⁽ () () () ()

1.6.5.3 刚体连接工具(运动副)

运动副是两构件直接接触并能产生相对运动的活动联接。两个构件上参与接触而构成运动副的点、线、面等元素被称为运动副元素。

1.6.6 工具面板

MxSim 工具面板包含其它常用的显式、隐藏、测量、查询、接触 对快捷搜索等工具。

6	1 🖉 🗠 I 🚿 🚧 🛔	<u>11</u>	🔳 % G*	😨 🔯 🔜 📐
× [显示编号		控制卡	∋片
	查询			
	临时节点			
	隐藏			
	测量			
	搜索接触对			

1.6.6.1 显示编号

对节点或单元的编号显示进行控制,也支持对显示的标签进行大小和颜色的自定义。

1.6.6.2 查询

根据 ID 号快速查询有限元模型中节点或单元。

1.6.6.3 临时节点

根据前处理需要创建或移除临时节点。

①点选"临时节点",进入临时 ②选取合适的"选择对象"方 ③根据需要选择"添加"、"利 全部自由节点"等	寸节点操作框 ℃,然后在网格视窗中选择响应的 多除"、"移除全部临时节点"、	的对象 "移除	<u> 拾取</u> 通过边 通过面 通过零件 通过1D 全部			返回主面板
显示编号	控制卡片			0		
查询				<i>w</i>		·天士n
临时节点	0	2				26/34
			临时节点		3	移除
0.000		选择对象	拾取	Ó	×	移除全部临时节点
测重						移除全部自由节点
搜索接触对						

1.6.6.4 隐藏

根据需要,对显示视窗中的单元、节点进行隐藏和显示的操作。

1.6.6.5 测量

通过选取节点的方式来测量距离或角度。

1.6.6.6 搜索接触对

自动搜索并创建装配件中的接触/绑定关系。

	控制卡片	 ①点击"搜 ②设置接触 ③点击"搜 可以根据需 ④搜索完成 	秦接触对",进入 对搜索的"距离。" 索",软件会自动 要修改接触类型为 后,点击"创建"	自动搜索接触对界 "* 角度 "容差 财视窗中的装配体 " 绑定 "或" 接触 ', 完成接触对的创	面 进行接触对的自治 ",离散方式也可 建	动搜索 可根据需要进行候	多改		
参数设置	名称	类型	滑移	裔散方式	属性	设置容差	交换主从面	删除 👛	王向
距离 2	1 Pair_1	面面绑定 *	đ	10-760 ×		먨认	\$	1	人面 人面
角度 135	2 Pair_2	面面绑定 🔹	đ	ā-āā *		默认	\$	0	
部件内部搜索	3 Pair_3	面面绑定 *	đ	ũ-110 ×		默认	\$	1	
1	4 Pair_4	面面绑定 *	đ	ij-116 +		默认	\$	1	
2	5 Pair_5	面面绑定 *	đ	10-180 ×		默认	\$	0	~
	6 Pair_6	面面绑定 *	ī	ũ-110 -		默认	\$	1	
	7 Pair_7	面面绑定 *	đ	ij-1161		默认	\$	0	
	8 Pair_8	面面绑定 🔹	đ	ii-iiii -		默认	\$	0	4
援索	9 Pair_9	面面绑定 🔹	đ	ā-760 ¥		默认	\$	1	创建

二、几何建模或导入

如同其它 CAE 软件, MxSim 仅支持简单几何零件的建模,如跌落 分析中的低面等。但 MxSim 支持导入第三方几何模型,使用第三方 CAD 软件建好的模型后,另存为.step 或.iges 等格式,然后在 MxSim 软件中可以直接导入几何模型使用。

2.1 几何建模

使用 MxSim 可以创建简单几何,如点、线、面、体。

几何点	线	面	实体	快捷编辑
	线编辑	面编辑	实体编辑	边编辑
		删除特征	肋板	几何点编辑
		抽中面		自动几何清理

2.1.1 创建几何点

可以通过输入坐标值、拾取已有的圆线/弧线/3 节点、几何线 U 参数等方式创建几何点。

2.1.1.1 通过坐标创建几何点

①点击"几何",展开创建几何 面板;
②点选"几何点";
③选择"XYZ"图标(即通过输入 X、Y、Z坐标值创建几何点);
④输入相应的X、Y、Z坐标值;
⑤点击确定完成几何点的创建。

2.1.1.2 通过圆心/弧心创建几何点

2.1.1.3 通过U参数创建几何点

2.1.2 创建几何线

通过输入起止点坐标创建几何线、通过已有节点创建多线段、通过 拉伸点创建线段、通过圆心/半径或3点来构建圆/弧线、通过选取几何 体/面的边创建几何线或通过偏置已有线来创建几何线。

2.1.2.1 两点坐标创建几何线

				1	
	-				
	ø. øe <u>v</u>			1	
1. 2 B		17 5			返回主菜单
起始点	<u></u>	§止点		1	返回
X	0.00	X	100.00	1	
Y	0.00	Y	0.00	1	
Z	0.00	Z	0.00		确定

2.1.2.2 通过拾取已有几何点创建多线段

2.1.2.3 通过拉伸节点创建几何线

2.1.2.4 通过圆心&半径/三点创建圆弧线

2.1.2.5 通过拾取几何边界创建几何线

2.1.2.5 通过偏置已有几何边界创建几何线

偏置几何特征上两个或两个以上连续的边界。

2.1.3 创建几何面

在 MxSim 的几何菜单中,也可以通过已有点、已有线或坐标等参数快速的创建简单几何面,如平面、圆柱面、圆台面、球面、圆环面, 也可以通过拉伸或扫略的方式生成几何面。

2.1.3.1 几何平面

通过正方形几何中心、边长和法向来创建正方向面。

基准点默认位置(0,0,0)。

2.1.3.2 圆柱面

通过底面圆心位置、半径和高度来构建几何圆柱面/部分圆柱面。

底面圆心默认位置(0,0,0),顶面圆心默认位置(0,0,10), 也可拾取已有节点。

2.1.3.3 圆台面

通过顶面圆、底面圆和高度矢量来构建圆台面。

底面圆心默认位置(0,0,0),顶面圆心默认位置(0,0,10),主半径 方向点默认位置(0,10,10),也可通过拾取已有节点。

2.1.3.4 球面

通过球心坐标和球半径创建圆球面。

球心默认位置(0,0,0)。

2.1.3.5 圆环面

通过中心点、方向和主、副半径值创建圆环面。

底面圆心(主圆心)默认位置(0,0,0),顶面圆心默认位置(0,0,10),副圆心默认位置(0,0,10),副墨径默认位置(0,2,10),起始平面向量点默认位置(0,10,10),也可拾取已创建节点。

2.1.3.6 旋转面

绕轴线旋转已有几何线或2节点生成几何面。

2.1.3.7 拉伸面

沿法向拉伸已有几何线或2节点(2点线)成面。

2.1.3.8 填充面

通过几何点、几何线或者网格节点来构建填充面。

2.1.4 创建几何体

类似于几何面的创建,通过已有点或坐标等参数快速的创建简单几 何体,如长方体、圆柱体、圆台体、球体、圆环体,也可以通过拉伸

面的方式生成几何体。

2.1.4.1 立方体(长方体)

通过选择或输入长方体的起始角点(基准点)和长方体的长、宽、 高(另外三个顶点的坐标)创建长方体。

基准点默认位置(0,0,0)。

2.1.4.2 圆柱体

通过底面圆心点(默认为原点,也可拾取已有节点)、顶面圆心(拾取已有 节点)和高度值来创建圆柱体。通过主半径与底面圆心共同构成的平面为起始面, 逆时针旋转一定角度后完成创建部分圆柱体。

底面圆心默认位置(0,0,0),顶面圆心默认位置(0,0,10),也可拾取已有节点。

2.1.4.3 圆台

通过顶面圆心、半径,底面圆心、半径和高度矢量构建圆台,也 可以通过控制角度构建部分圆台。

底面圆心默认位置(0,0,0),顶面圆心默认位置(0,0,10), 主半径方向点默认位置(0,10,10),也可通过拾取已有节点。

2.1.4.4 球体

通过球体球心坐标值和球半径创建球体。

球心默认位置(0,0,0)。

2.1.4.5 圆环体

通过圆环体的几何中心点和内、外环半径创建圆环体。

底面圆心(主圆心)默认位置(0,0,0),顶面圆心默认位置(0,0,10),副圆心默认位置(0,0,10),副墨径默认位置(0,2,10),起始平面向量点默认位置(0,10,10),也可拾取已创建节点。

2.1.4.6 回转体

将已知几何面沿某个矢量方向拉伸成几何体。

2.1.4.7 拉伸成体

将已知几何面沿指定方向或已有几何线拉伸/扫略成几何体。

2.2 导入模型

2.2.1 导入几何

使用 MxSim,可以直接导入外部几何(*.step, *.iges 等)。

2.2.2 导入计算文件

MxSim 支持导入第三方计算文件,并使用 MxSim 进行求解及后处
理。目前支持导入 MxSim(*.mx)、Nastran(*.bdf)、Optistuct(*.fem)、
Ansys(*.cbd)、Abaqus(*.inp)等求解文件。

2.2.3 导入结果文件

支持直接导入结果文件并进行后处理与结果分析。目前仅支持导入 MxSim Database(*.mxdb)结果文件。

2.2.4 导入网格文件

MxSim 支持直接导入网格文件并进行后处理与结果分析,目前可支持导入 Nastran(*.bdf)、OptiStruct(*.fem)、Ansys(*.cdb)、Abaqus(*.inp)、LsDyna(*.k)、

Mesh File(*.msh)网格文件。

₩ 导入		?	×
类型网格文件			*
 All Files Nastran(*.bdf) OptiStruct(*.fem) Ansys(*.odb) Abaqus(*.inp) LsDyna(*.k) No.l. R¹/2 (n-1) 			
文件	J	浏览	ð
	Ęλ	IN	¥

三、网格划分

针对不同的单元类型,选择对应的网格类型进行网格剖分,在 MxSim 软件中,不但可以直接创建节点、网格,也可以针对 1D、2D 单元和 3D 单元进行线剖分、面剖分和实体剖分。

除基础的网格生成功能外,目前支持提取表面网格,粒子生成, 线拉伸,旋转,拉伸等辅助功能。

3.1 线剖分

用于一维的杆、桁架、梁等进行剖分,也可用于对三维体和二维 板壳单元的局部线进行局部控制。选择需要剖分的几何线。

J Contraction	 ①选取剖分对象:可以通过ctrl+来选取视窗中所有几何线,也可 ②网格剖分尺寸:可手动输入网 ③点击剖分,软件会自动对选中 ④剖分后,"网格调整"框激活数字,左加右减修改网格密度)控制; ⑤可以通过"鼠标"或"设置偏 ⑥点击"确定"完成线剖分 	+鼠标左键拾取几何线,也可以通过, "通过"零件"来拾取对应零件的几何; 格剖分的尺寸值; 的几何线进行剖分; ;,可使用"鼠标调整"(鼠标点击视 、边数目调整和边网格尺寸等方式对; ;置因子"的方式对节点的偏置进行控	"全部" 线 窗中网格上的 局部网格进行 制 ;
● ● ● 上 ● ● 王 ● ● 王 ● ■ ● ■ ● ■ ● ■ ● ■ ● ■ ● ■	(2) (2) (2) (2) (1) (2) (2) (2) (1) (2) (2) (2) (1) (2) (2) (2)	节点偏置	透回主面板 返回 到分
位 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	機整例指入寸 1940.2 主部22 2,000 ▼		放弃 确定 6

3.2 面剖分

划分二维平面单元,用于分析平面问题。

	0	 ①选取剖分对象: 件"选取剖分す; ②面网格类型和网网格尺寸可手动输 ③点"剖分"生成 ④剖分后"网格调 疏密(左加右减) ③点选节点偏置的 可通过鼠标在数字 也可以通过选取几 ⑥完成设置后,点 	Ctrl+鼠标左键拾取或视窗中"全部" 如格尺寸:网格形状可选"三角形"或 入数值; 适面网格; 题整"框激活,可通过鼠标点网格上数 ,也可通过调整边上节点数或边网格 切"左加右减",网格上数字变为偏置 些上点击(左加右减)调节偏置值; 见何边并输入偏置值来修改节点偏置量 氧"确定"完成面剖分	或通过"零 ;"四边形"' ;字来调整网格 ;尺寸来控制; ;值,默认为0, ;;
# # L I % * ± # Z % B B	🕸 🔳 🖢 를 L			
 ■ 面剖分 ● 面剖分 ● 合部 ● 全部 ● 全部 ● 安件 ● 「日本 ●	网格调整 航标调整 <u>左加右减</u> 调整节点数目 <u>拾取边</u> 调整网格尺寸 <u>拾取边</u>	 全部边 2 ≑ 全部边 2.000 ¢ 	节点编置	返回主面板 返回 副分 3 放弃 确定 6

3.3 实体剖分

对三维实体或已有的 3D 实体网格进行实体剖分, 生成或修改实体

单元。

3.4 局部网格控制

进行实体网格剖分时,默认的网格尺寸设置为全局尺寸,即剖分 出的网格尺寸均匀且一致,目前暂无法自动对零部件的局部网格疏密 调整。线/面网格初步剖分完成后,可手动对几何边或几何面的网格进 行调整。

		 ①进 ②设 ③点 ④通 ⑦通 ⑤通 ⑥点 ⑦再 	 基择对局部的"线"或"面"进行剖分; 2置网格剖分的形状和尺寸; 3" 剖分"完成局部网格剖分并预览; 通过鼠标点击、调整节点数目或调整网格尺寸对网格进 調整; 通过鼠标点击、设置偏置因子等方式设置节点偏置量; 5、 通过鼠标点击、设置偏置因子等方式设置节点偏置量; 5、 每对整体零部件或特征进行整体网格剖分;
🗊 🗐 🗠 I 🛸 🐲 🛓	1 🥥 📰 % Go 😨	🕸 🔳 📐 🥃 🖳 🌑 🐽 🕶	Ð
8 8 1 1 1 1 1 1 1 1 1 1 1 1 1	网格剖分	网格调整 3 鼠标调整 1 调整节点数目 拾取边 全部边 调整网格尺寸 拾取边 全部边	节点偏置 返回主面板 鼠标偏置 左加右减 设置偏置因子 拾取边 2.000 ⑤ 1000 ○ 6 @@

3.5 创建节点

在网格窗口,输入坐标值创建节点生成节点。

		输入坐标值生成节点 (总体坐标系)
		坐标 10,0,0
(interest	创建节点	
创建节点	创建方式 坐标 坐标	
		0

3.6 创建网格

在网格窗口,通过输入坐标值或选取已有节点,创建并生成相应的网格部件(1D线网格、2D三角形/四边形网格、3D四面体/四棱锥/四棱柱/六面体网格)。

3.7 提取表面网格

在网格窗口,可以通过对面或零件的选择快速提取表面网格

通过对面或零件的选择 提取表面网格

3.8 粒子生成

在网格窗口,可以快速选择节点并生成颗粒

3.9 拉伸

通过沿某矢量方向拉伸跟面关联的网格生成实体网格。

四、材料定义

根据需要选择对应的材料类型,然后输入分析类型所必须的材料参数;或直接导入材料库的标准材料(建设中)。

4.1 弹性材料参数设置

4.2 常规塑性材料参数设置

4.3 超弹性材料参数设置

4.4 刚体材料参数设置

4.5 压电材料

五、截面属性

截面属性,即单元的特征参数属性。对于 1D 杆/梁单元,截面属性即截面的参数信息(惯性矩、抗弯截面系数等);对于 2D 板/壳单元,截面属性指的是板/壳单元的厚度相关信息(是否均质、厚度等);对于 3D 实体单元,截面属性无实际意义。

MxSim中,需要先创建单元的截面属性(杆/梁单元的截面、板/壳单元的厚度),然后再把截面属性赋予给对应的单元/单元集合。

5.1 截面属性创建与赋予

根据需求创建、选择和设置相应的截面属性,例如1D杆/梁单元的截面,2D板/壳单元的厚度,创建完成后把截面属性赋予相应单元。

5.1.1 1D 杆/梁单元的截面创建

对于 1D 单元,需要先创建杆/梁的截面属性,MxSim 提供了两种方式输入杆/ 梁的截面信息:可以直接绘制杆/梁的截面;也可以通过直接输入截面的参数(面积、惯性矩、抗弯截面模量等)来完成截面属性的定义。

5.1.1.1 梁截面工具-MXBeam

针对 1D 杆/梁单元的截面属性, MxSim 提供了梁截面创建工具-MXBeam, 可以

选择多种标准杆/梁截面,并可编辑尺寸参数。

5.1.1.2 杆单元截面属性创建

5.1.1.3 梁单元截面属性创建

属性列	表	新建	更新	属性分类	属性类型	材料列表	创建方式	选择截面 输入属性值	返回主面板
歴性名 rod 可招 Beam 常者 Dc 丁元 检查赋予 一键赋	类型 田可拉杆 版面梁 予 赋予	名称 ① ①创建截 ②属性分 ③属性类	beam	H PT m m m m m m m m m m m m m m m m m m m	 ##西梁 ③ ④在"材料列表" ⑤截面创建方式送 梁截面参数; 	Material 1 Q235 45 ④ Al6061 中选择相应的材料; 选择"输入属性值",	截面面积A 惯性矩Ixy 惯性矩Ixz 扭转矩J 剪切系数X1 输入 6月 截面	3 ^{选項参数} ^{选項参数} 京"确定并赋 面属性的创建	△ ④ ④ ⑥ ⑥ ① ① ③ 定 并照予 ③ 違 二 一 ③ 定 一 ③ 定 一 ③ 定 一 ③ 定 一 ③ 定 一 ③ 定 一 ③ 定 一 ③ 定 一 ③ 定 一 ③ 定 一 ③ 定 一 ③ 定 一 ③ 定 一 ③ 定 一 ③ 定 一 ③ 定 一 ③ 定 一 ③ 二 一 ③ 二 一 ③ 定 一 ③ 二 一 ③ 二 一 ③ 二 一 ③ 二 一 ③ 二 一 ③ 二 一 ③ 二 一 ③ 二 〇 ③ 二 〇 ③ 二 〇 ③ 二 〇 ③ 二 〇 ③ 二 〇 ③ 二 〇 ③ 二 〇 ③ 二 〇 ③ 二 〇 ③ 二 〇 ③ 二 〇 ③ 二 〇 ③ 二 〇 ③ 二 〇 ③ 二 〇 ③ 二 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

5.1.2 2D 单元的截面属性创建

对于 2D 平面问题,包含壳单元、平面应力/应变单元、实体壳、剪切板等类型,根据实际单元类型定义相应的截面属性参数。除了均质厚度的板壳,MxSim 也支持对于复合铺层的材料。

5.1.2.1 壳单元的截面属性创建

5.1.2.2 平面应力/应变单元/剪切板的截面属性创建

5.1.2.3 实体单元的截面属性创建

5.1.2.4 弹簧单元的截面属性创建

5.2 截面属性赋予

截面属性创建完成后,需要把截面属性赋予给单元集合(点、线、面、体), 也可检查截面属性的赋予状态。

六、单元类型的定义与关联

截面属性定义时, MxSim 会自动定义默认的单元类型。

MxSim为用户提供了丰富的单元库,几乎可以模拟实际工程中任意几何形状的有限元模型,在对一个问题进行分析时,可以根据实际情况选择使用。

📁 🌐 🗠 I 💌 🦇 😃 🥥 🔚 🗞 Ge 😨 🛯 🍪 🛄 📐 🛒 🛴 🔵 🐠 😁

杆	梁	
平面应变	平面应力	
壳	膜	剪切板
实体壳	三维实体	
质量	弹簧	
低阶高精度		

6.1 杆单元

6.2 梁单元

梁		单元名称	方向	西卢矢量	起点	0, 0, 0	返回主菜的
单元名称 D3B2	D3B2			两点矢量	终点	1, 0, 0	返回
0	〕点击"梁"单元	,梁单元类型名称	默认	节点			
D)3B2, B2意为2 ⁴	古点Beam	②梁单元	元方向定义:	▼ 「 売ID		检查
			两点矢量	量:输入起点、约	冬点坐标值		确定
			节点ID:	输入节点的ID+	믁	③确定完成梁单元	定义与关

6.3 平面应变单元

6.4 平面应力单元

6.5 壳单元

6.6 剪切板单元

6.7 三维实体单元

 "单元"中选择三维实体;
 ②默认选择"四面体"单元;
 ③单元类型可选择D3T4和D3T10,意 为4节点或10节点;
 ④ctrl+鼠标左键选择相应的几何实体;
 ⑤点确定完成三维实体单元类型的创建和关联。

6.8 质量单元

6.9 弹簧

	单元名称	返回主菜单	①"单元"由选择通等·
线 ELAS1 目由度 1 3	ELAS1	返回 检查 (确定)	 ②弹簧单元默认为ELAS1; ③输入弹簧单元自由度的数值; ④ctrl+鼠标左键选择相应几何; ⑤点确定完成弹簧单元定义与关联

七、定义分析工况

分析工况是用户定义的,一个分析过程的各个步骤所包含的不同的分析类型、 不同的载荷和边界条件等。MxSim分析工况包括:工况名称、工况描述和分析类 型选项。然后可以在每个分析工况中应用不同的载荷、边界条件、分析过程选项、 输出要求。

💣 🌐 🗠 I 💌 阿 😃 🥔 🔚 🗞 🚱 🕄 🎕 🗐 📐 🥌 🛴 🔵 🕘 😁

Ø	分相	所工况列表		新建		更新	分析类型列表		几何非线性	关	•	
	工况名	类型	^ [名称	bulkling	s 😣	线性静态分析	*	时间步	自动	•	
	contact	非线性静太公析	-0	描述	屈曲	8	非线性静态分析 模态分析		迭代策略	拟牛顿−线性搜索	•	
	contact	HESOLUTION 2011					线性屈曲分析	线性屈曲分析		方程求解器	DSV	•
板	frequency	模态分析					线性瞬态分析(模态法)		收敛容差	位移容差,能量容差	É	
功能面	bulkling	线性屈曲分析	-				线性频响分析(植态法)	-	动态	关 关	•	

7.1 工况名称

用来自定义工况的名称,以区分实际应用中的不同工况。MxSim支持自定义工况,也可默认为"case_*"(*为自动编号);

7.2 工况描述

用于对工况进行说明,选填;

7.3 分析类型

MxSim支持各种常用分析类型:线性静态分析、非线性静态分析、模态分析、 线性瞬态分析(模态法/直接法)、线性谐响应分析(模态法/直接法)、随机振 动分析、响应谱分析、稳态热分析、线性瞬态传热分析、非线性瞬态传热分析等。

	分析类型列表
42	线性静态分析
E	F线性分析
相	莫态分析
42	线性瞬态分析(模态法)
	线性瞬态分析(直接法)
쇞	线性频响分析(模态法)
4	线性频响分析(直接法)
颐	直机振动分析
D	向应谱分析
利	急态传热分析
42	线性瞬态传热分析
E	非线性瞬态传热分析

7.4 分析工况定义

7.4.1 线性静态分析

7.4.2 非线性静态分析

7.4.3 模态分析

7.4.4 线性瞬态分析

线性动力学瞬态分析用于研究时域载荷作用下的结构动力学响应问题。计算 时主要有两类不同的数值算法:模态叠加法(模态法)和直接积分法(直接法)。

7.4.4.1模态叠加法

利用模态计算结果,通过模态坐标变换或解耦的运动方程来计算结构响应。

Block Lanczos	模态求解器	Block Lanczos	う 结构阻尼	. G W3
Lanczos	最小频率	0	瑞利阻尼	alpha1 alpha2
模态求解器可选择"分块兰索斯"、 "兰索斯"或"Arpack"求解器	最大频率 阶数	0	模态阻尼	达择曲线
分析类型列表	 ② 	▲	④ ①分析类型选择 ②点选"时间步	" "线性瞬态分析 (模态法) " " , 输入步数和步长
线性静态分析 非线性分析 模态分析 线性瞬态分析(模态法) 线性瞬态分析(模态法)	步数 0 步长 0		 ③选择合适的模 入模态阶数) ④输入响应阻尼 ⑤点击 "确定" 	态参数;(或输入频率范围,或输 值 完成分析类型的创建
线性频响分析(模态法) 线性频响分析(直接法) 随机振动分析 响应谱分析 命士を持い255				
最近18月27月11 线性瞬态传热分析 非线性瞬态传热分析				

7.4.4.2直接积分法

对运动微分方程进行直接积分,求解耦合方程,计算结构响应。

7.4.5 线性频响分析

频响分析用于确定线性结构在承受随已知正弦(简谐)规律变化的载荷时稳态响应的一种技术。输入载荷可以是已知幅值和频率的力、压力和位移,而输出值包括节点位移,也可以是导出的值,如应力、应变等。谐响应分析按照求解方法来分有模态叠加法和完全积分法,MxSim目前默认采用模态法。

7.4.5.1 线性频响分析(模态法)

模态叠加法是将模态分析得到的模态振型(特征向量)进行一个有系数的叠

加。

7.4.5.2 线性频响分析(直接法)

对运动微分方程进行直接积分,求解耦合方程,计算结构响应。

①分析类型列表中选择"线性频响分 ②定义频响分析的频率集合,可使用 扫频点、或使用线性均布扫频点、或 式定义扫频点	分析(直接法) " 用散点FREQ来定义 或使用对数均布的方 ②	频率集合 阻尼 结构阻尼 G 瑞利阻尼 alpha1	alpha2
分析类型列表	频率集合 阻尼	> 3	
线性静态分析 15-05-05-05-05-05-05-05-05-05-05-05-05-05	 散点FREQ 	一 值	
非我在分析 模态分析	线性均布FREQ1	價值	
(线性瞬态分析(模态法) (线性瞬态分析(直接法)	对数均布FREQ2	價值	
送性频响分析(模态法) 线性频响分析(直接法) 随机振动分析 响应谱分析 稳态传热分析 线性瞬态传热分析 非线性瞬态传热分析	③定义阻尼参数,轴 ④点击"确定"完成	俞入结构阻尼或输入瑞利阻尼 成分析工况的创建	系数

7.4.6 随机振动分析

随机振动分析是指在机构的一些随机激励作用下,计算一些物理量如位移、 应力等的概率分布状况。目前,随机振动分析在机载电子设备、声学装载部件、 抖动的光学对准设备等的设计上有广泛应用。

在做随机振动前,需要先对分析对象做频响分析。

迈曦软件

MAIXI SOFTWAR

响应谱分析用于分析计算当结构受到瞬态载荷作用时产生的最大响应。

7.4.8 稳态传热分析

7.4.9 线性瞬态传热分析

7.4.10 非线性瞬态传热分析

八、定义载荷

MxSim中的载荷包含集中力、力矩、重力、压强、瞬态载荷、频域载荷、线载荷、预紧力、热流密度、对流换热载荷、温度载荷、内部热源、电荷、电荷密度等。

8.1 集中力

施加并作用在节点上的力。

8.2 力矩

施加力矩或弯矩载荷。

8.3 重力

结构的自重载荷,需要输入输入材料密度。

8.4 压强

压强即均匀作用在面上的分布载荷。

8.5 瞬态载荷

随时间变化的载荷,一般用于瞬态动力学分析。

8.6 频域载荷

频域范围内变化的载荷,一般用于瞬态动力学或频响分析。

8.7 线载荷

施加在线节点上的均匀分布的力。

载荷	前列表	新建	更新	工况	载荷类型	值 160	4	作用对象 通过边 💽 返回主面板
载荷名	类型	名称	ne_pressure 🔇	Non-Linear	集中力	方向 0,0,1	5	已拾取到作用对象
Tansient_L	瞬态载荷	C	Ū.		重力 压强	曲线	选择曲线-默认)	\sim (7)
line_pressure	e 线载荷		5	(2)	瞬态载荷		6	拾取
9					线载荷 ③		U	通过边 通过零件 确定
 ①新 ② ③ 4 ⑤ 	建载荷, 洋 择载荷对/ 荷类型选/ 入线载荷[义线载荷[名称默认 立的工况 译"线载 的值; 的方向(或自定义输 ; 荷"; 坐标值的矢	ì入; :量和,例如0,	1, 1, 总体坐标系)	8 9	点"确定 载荷列表F	【集合】 "完成线载荷的创建; 中会显示已创建的载荷。

⑦作用对象可通过" 拾取"" 边"" 零件"" 全部"" ID"等方式;

8.8 预紧力

通过定义预紧力或预位移来施加螺栓的预紧力。

 ①载荷类型选择"预紧力" ②③根据需要选择预紧力施加类并输入相应的预紧力或预位移数 ④预紧类型可选"力"或"位移 ③3D预紧可直接拾取单元、通过 1D预紧则直接选取两个节点即可 ⑥点击确定完成预紧力的创建 	型, "3 7值, 定义 7 过面或集合 可	D螺栓预紧"或"1D螺栓] /预紧的矢量方向 合作为作用对象	硕紧"	的稿件规度		节点1
载荷类型	类型	3D螺栓预紧	う作用対象	拾取 ,	返回主面板	
集中力	预紧类型	7 0 (5	暂未拾取/选择任何对象!	(5)	
力矩			-			
重力	1直		\mathcal{H}		Ī	
□ 「「」 「」 「」 「」	预紧矢量	用英文字符","分割(选填)				
频域载荷	-		@			
线载荷			N			
预繁力		カ				
於Junelle 对流换执载荷		位移				
温度载荷						
内部热源					-	
电荷					6	
H2/可查)表					确定	

8.9 热流密度

单位时间内通过单位面积传递的热量,施加在面上或边上的热载荷。

8.10 对流换热载荷

迈曦软件

通过在单元面或单元边线上施加对流换热系数和定义环境温度来施加对流 换热载荷。

①载荷类型选择"对流换热载荷 ②选择对流换热载荷的类型(面 设置对流换热系数曲线,设置环 ③面对流换热载荷,可通过选择	"" 对流或边对流) 境温度和温度曲 三维网格表面或	,并输入相应的系数 曲线 载二维网格上施加	作用类型 二维二维网格边线 一维网格 一维网格 20对流换热影荷
载荷类型	类型	面对流换热载荷 🕢	作用类型 三维网格表面 ⑤ 返回主面板
集中力 力矩 重力	② 对流换热系数 对流换热系数曲线	选择曲线	作用对象 拾取 ③ 三维网格表面
	环境温度	选填参数	
频域载荷	环境温度曲线	选择曲线	
线截荷 预紧力 热流密度 对流换热载荷 温度载荷 内部热源 电荷 电荷 电荷密度	④边对流游 ⑤点击"硕	秧热载荷,可通过选择 争定"完成对流换热载(二维三维网格边线或一维网格的方式施加 苛的施加 ⑤ 通定

8.11 温度载荷

定义温度载荷。

载荷类型	值 作用对象	指取 ③	回主面板
集中力 力矩 重力 压强 瞬态载荷 频域载荷 线载荷 预紧力 热流密度 <u>对流换热</u> 载荷 <u>温度载荷</u> 内部热源 电荷 电荷密度	曲线 选择曲线 ①载荷类型选择"温度载荷" ②输入温度数值 ③选择合适的方式选择"作用对象" ④点击"确定"完成温度载荷的施加	首未指取/选择任何对象: 拾取 通过面 通过边 通过零件 ID 全部 集合	
			- 痈 定

8.12 内部热源

施加合适的热流密度作为内部热源。

载荷类型	热流密度	拾取 ③ 💽 返回主面板
集中力 力矩 軍力	曲线 选择曲线	<u> 新丰拾职 6 建择任何对象</u>
压强 瞬态载荷 频域载荷 援载荷 预紧力 热流密度 对流换热载荷 温度载荷 内部热源	 ①载荷类型选择"内部热源" ②输入热流密度数值和曲线(如必要) ③在视窗中选择合适的"作用对象" ④点击"确定"完成内部热源的创建 	<u> 拾取</u> 通过零件 ID 全部 集合
电荷密度		④ ④

8.13 电荷

在选取的作用对象上施加电荷。

载荷类型	值	② 注 报曲 绪	作用对象	拾取 暂未拾取	③		板
 朱中辺 力矩 重力 压强 瞬态載荷 频域載荷 线载荷 预紧力 热流密度 对流换热载荷 温度载荷 内部热源 电荷 电荷密度 	(1) (1) (2) 年 (3) (4) 月	选择曲线 选择"电荷"载荷 俞入电荷的数值和曲: 王视窗选取合适的"/ 京击"确定"完成创	线 (如必要) 作用对象" 建		<u> 拾取</u> 通过面 通过过 通过零件 ID 全部 集合	ھ ھ	

8.14 电荷密度

选取合适的作用对象施加电荷密度。

九、施加约束

目前 MxSim 支持的约束类型有对称/反对称约束、固定约束、位移/转角约束、 虚拟约束、初始边界条件等,通过限制单元的节点自由度来约束分析对象。

9.1 固定/对称/反对称约束

通过约束节点相应坐标分量的自由度来约束分析对象;

边界条件列表 边界条件名 类型 BC_1 固定 BC_2 ⑦ 位移/转角	新建 更新 名称 BC_2 ③ ①	工况 Non-Linear ②	边界条件类型 固定/对称/反对称 位移/转角 虚拟约束 初始边界条件 (3)	 ● 完全固定(U1=U2=U3=UR1=UR2=UR3=0) 校接(U1=U2=U3=0) ④ ◆于x轴对称(U1=UR2=UR3=0) 关于y轴对称(U2=UR1=UR3=0) 关于z轴对称(U2=UR1=UR3=0) 关于z轴反对称(U2=UR1=UR2=0) 关于x轴反对称(U2=UR1=UR2=0) 关于x轴反对称(U2=UR1=UR2=0) 	作用对象 拾取 适回主面板 智未拾取任何对象! 5 <u>拾取</u> 通过边 6
①新硬 ②选择 ③边界 ④根据 ⑤作月 ⑥点击 ⑦边界	约束边界条件, 名 约束要关联的工场 条件类型选择" 固 实际情况选择对应 对象可通过" 拾取 " 确定"完成约束 条件列表中会显示	4 新可默认或自 1; 1; 1; 1; 2; 2; 2; 2; 3; 3; 4; 5; 5; 4; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5	」 定义输入; 称"; 、交接、对称、反x i ""零件""ID""	」○ ¥Ŧ2軸反对称(01=02=0R3=0) 寸称等); 全部""集合"等方式选择	(MacAmai) 通过零件) ① 全部 集合

9.2 位移/转角

通过设置节点的平动、转动自由度来施加边界条件。

边界条	件列表	新建	更新	工况	边界条件类型	🗌 U1		作用对象	拾取	🕤 返回主面板
边界条件名	类型	名称	BC_2 🛛 🛞	Non-Linear	固定/对称/反对称	√ U2	0.9		暂未拾取任何对	象!
BC_1	固定	(1)	0	虚拟约束 3	✓ U3				5
BC_2	位移/转角	1		e	初始边界条件	UR2	<u>v</u>	拾取		
0						UR3 曲线	选择曲线一默认	通过通过	边 面 :零件	(6) (确定)
①新建约束边界条件,名称可默认或自定义输入; ②选择相应的工况; ③边界条件类型选择"位移/转角",即通过线位移或角位移来控制节点的自由度; ④通过勾选激活相应的平移或转动自由度,可输入对应线位移或角位移数值;(不激活表示不限制该自由度) ⑤作用对象可通过"拾取""边""面""零件""ID""全部""集合"等方式选取; ⑥点击"确定"完成位移/转角边界的创建; ⑦边界条件列表中会显示已创建的边界。										

9.3 虚拟约束

手动开启惯性释放时使用虚拟约束,对约束对象单元的6个自由度进行开启 /关闭设置。

9.4 初始边界条件

通过设置节点的初始速度或位移等条件来施加边界,一般用于动力学分析 的初始条件设置。

						位移 速度				
边界条	·件列表	新建	更新	工况	边界条件类型	类型	速度	Ċ	作用对象 拾取	💽 返回主面板
边界条件名	类型	名称	BC_2 😵	Non-Linear	固定/对称/反对称	√ ¥1	1.2		暂未拾取任何	对象!
BC_1	固定				位移/转角 虚拟约束	₩2	E			6
BC_2	位移/转角	(1)		(2)	初始边界条件 3	✓ VR1	30			
						VR2			拾取 通过边 通过页	确定
 ①新建约束边界条件,名称可默认或自定义输入; ②选择对应的工况; ③边界条件类型选择"初始边界条件"; ④初始条件类型可选"速度"或"位移" 				⑤勾选并输入 ⑥作用对象可 全部、集合等 ⑦点"确定"	初始速 通过拾 方式选 完成初	度或位移 取、边、 取 始边界条	的方向矢量 面、零件、 件的创建。	通过間 通: 通过零件 ID 全部 集合	0	

9.5 温度边界

通过在作用对象上施加温度值来设置温度边界。

边界条件类型	值	拾取 ③ ② 返回主面板
固定/对称/反对称 位移/转角 虚拟约束 加始边累多件 温度边界 电势	曲线 选择曲线 ①边界条件类型选择"温度边界" ②输入温度的数值和曲线(如必要) ③在模型中选取合适的"作用对象" ④点击"确定"完成温度边界的创建	拾取 通过边 通过面 通过零件 ID 全部 集合
		通定

9.6 电势

通过在作用对象上施加电视值来设置电势边界。

边界条件类型 固定/对称/反对称	直 作用对象 指 → 曲线 送择曲线 →	取 3 应回主面板 未拾取任何对象!
位移/转角 虚拟约束 初始边界条件 温度边界 电势	 ①边界条件类型选择"电势" ②输入相应的"电势"数值和曲线(如必要) ③在模型视窗中选择合适的作用对象 ④点击"确定"完成电势的创建 	<u>拾取</u> 通过边 通过面 通过零件 ID 全部 集合
		④ 确定

十、连接

根据需要创建刚性连接、柔性连接、MPC、面面绑定、电势耦合等连接。

十一、接触

手动定义装配体或多体的点对面、面对面、面对面 tid、点对面弹簧等接触 关系。

11.1 点对面接触

摩擦接触的一种,可通过定义主面和从面及相应的参数来定义点对面接触。 从面上的每个节点与该节点在主面上的投影点建立接触关系,每个接触条件都包 含一个从面节点和它的投影点附近的一组主面节点。从面节点不会穿透主面,但 主面节点可以穿透从面。

11.2 面对面接触

摩擦接触的一种,不同于点对面接触,面对面接触会为整个从面(而不是单 个节点)建立接触条件,在接触分析过程中同时考虑主面和从面的形状变化。可 能在某些节点上出现穿透现象,但是穿透的程度不会很严重。

十二、求解

将单元总装成整个离散域的总矩阵方程(联合方程组)。总装是在相邻单元节 点进行。状态变量及其导数(如果可能)连续性建立在节点处。联立方程组的求解 可用直接法、迭代法。求解结果是单元节点处状态变量的近似值。

12.1 输出设置

MxSim中可定义两种类型的输出数据:场输出和历史输出。场输出用于描述 某个量随空间位置的变化,例如模型绘图(变形图、云图等);历史输出用于某 个量随时间的变化,例如 X-Y 绘图。

12.1.1 场变量输出

一般用于图形查看应力、应变、位移、速度、加速度等结果,在后处理前选 中需要输出的场变量。

12.1.2 历史变量

历史变量用于输出少量单元或节点上的计算结果,用于生成 X-Y 图,以便对结果进行分析评价。在后处理之后进行历史输出。

12.2 计算任务

创建计算任务,并进行求解选项设置后进行求解。

十三、拓扑优化

拓扑优化(topology optimization)是一种根据给定的负载情况、约束条 件和性能指标,在给定的区域内对材料分布进行优化的数学方法,是结构优化的 一种。MxSim 支持对结构进行拓扑优化。

💋 🗊 🗠 I 🐋 🚧 🛓	L 🥏 😤 % G 🔊 🗔	🕼 🔳 📐 🟉 L	. 🔵 🕕 өө			
优化任务列表	(1) 新建 更新	设计域列表	优化响应列表	优化约束列表	优化目标列表	返回主面板
Bridge_Opt. 🅜	名称 Bridge_Opt. 描述 英型 拓扑优化 ▼	Solid_3D	Flexibility Volume_R 3	Constraint_1	Objective_1	6 - <u><u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>
○ ○ 1 Solid_3D 新建 定又方式 通过 截面属性 Soli ● ● 胞除 选择 ● ●	? × 更新 其就面属性⊙ 直 30 ▼ 與定 美闭	Hexibility Volume_R 単除 选择	3-1 新建 更新 名称 olume.R ♥ 类型 体积分数●	? × 确定 关闭	代化目标 (5-1) (? × 更新 bbjective_1 3 最小化 Flexibility 课意
通过或回应性 通过集合 通过零件		柔度 频率 体积分 应力	N 65/653束 Constraint_1 劇除 选择	 ④-1 新建 更新 查称 pnstraint_1 曼小边界 1e=20 曼大边界 0.4 约束响应 Volume_R 	2 × 國定 关闭	型小化 最大化 最小化最大值 最大化最小值

拓扑优化步骤:

① 点击"拓扑优化"图标;

② 创建设计域,点"+"添加设计域;

②-1 设计域定义方式,可以选择通过"截面属性"(单元属性)创建,也可通过"集合""零件"创建设计域;

③优化响应参数创建,点"+"添加响应参数;

③-1参数类型可选"柔度"(刚度的反义)、"频率"(模态分析)、"体积分数"、"应力"等;可以创建多个优化响应参数,用于定义约束条件和优化目标。

④优化约束条件的创建,点"+"创建约束条件;

④-1 约束响应可在已创建的"优化响应参数"中选择,选择参数后,设置响应的边界值(最大、最小),点"确定"完成创建;

⑤优化目标的创建,点"+"创建优化目标;

⑤-1 优化目标可在已创建的"优化响应参数"中选择,选择参数后,方式可选"最小化"、"最大化"、"最小化最大值"、"最大化最小值"等,点"确定"完成创建;

⑥点击"确定"完成拓扑优化任务的创建;

⑦优化任务列表中显示已经创建的优化任务。

十四、后处理

求解完成后,需要对所求出的解根据有关准则进行分析和评价。后处理使用 户能简便提取信息,了解计算结果。

求解成功后, MxSim 会自动跳至"后处理"界面。

进入后处理 求解成功完成后,软件会自动跳转至后处理 在模型树中点选"后处理"也可转至后处理	
前处理 ← DefaultProject →	
调出"后处理工具栏" 在功能面板"工具栏"的任意"空白处"单击鼠标"右键",勾选后调出	
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	 ✓ 拾取功能组 ✓ 約处理功能组 ✓ 工具功能组 □ 后处理功能组
🎕 🔳 🛬 🖅 🗽 🟴 🛲 エ 📔 📓 🕸 🌒 🕲 🚳 🗒 💷	

14.1 云图窗口

14.1.1 位移变量

14.1.2 应力变量

14.1.3 后处理云图设置-层

该选项在分析对象包含二维平面单元时可用。

14.2 变形图

