全爱科技 GPU 大模型 AI 开发套件 HOUYI-1000A 技术白皮书

文档版本 03

发布日期 2025-9-25

全爱科技(上海)有限公司

版权所有 全爱科技(上海)有限公司 2025. 保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标声明

童 全爱科技[®] 后羿 JTDS 二郎神

和其他全爱商标均为全爱科技(上海)有限公司的商标。 本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受全爱科技商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,全爱公司对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

全爱科技(上海)有限公司

地址: 上海市闵行区剑川路 920 号 2 栋 3 层 邮编: 200240

文档更新记录

版本	日期	更新记录
01	2025. 5. 29	初版发布
02	2025. 8. 27	图片修改
03	2025. 9. 25	细节格式修改

操作系统支持版本如下表

操作系统版本	Ubuntu
全爱科技 硬件产品:	全爱科技 GPU 大模型 AI 开发套件 HOUYI-1000A
产品账号密码 (root 账号不支 持远程和界面登 陆)	账号: root 密码: 12345678 账号: dev 密码: 12345678

目录

1产品说明1-
1.1 概述 1 ·
1.2 产品特点
1.3 基本规格
1.4 外观结构 1 -
1.5 系统框图
2 功能说明 5 -
2.1 大模型能力 - 5 -
3接口介绍7.
3.1 调试 接口
3.2 PCIe 接口
3.3 USB 接口
3.4 DP 接口
3.5 以太网 接口
3.6 串口 接口
3.7 电源 接口
3.8 Type C 接口
3.9 M.2 Key M 连接器
A 缩略语 10 ·

1产品说明

1.1 概述

全爱科技积极响应 AI 研发与产业落地的双重需求,正式推出 HOUYI-1000A AI 开发套件 —— 一款面向科研机构、高校实验室、企业研发团队及边缘计算开发者的一体化人工智能开发平台。集成多核 CPU、大算力 GPU 与高能效 NPU,提供高达数十 TOPS 的峰值 AI 算力(INT8),显著降低开发门槛,提升研发效率。

1.2 产品特点

- CPU 12 核/8 核 2.65 GHz
- 最大可提供 50 TOPS INT8 算力,适用于 AI 推理及高性能计算场景。
- 支持多路 H. 264/H. 265 硬件编解码:

解码: 2*4K 60fps。 编码: 2*8K 30fps。

1.3 外观结构

外观图

全爱科技 AI 开发套件 HOUYI-1000A 采用紧凑的 3.5 寸主板形态设计,外观如图 1-1 所示。

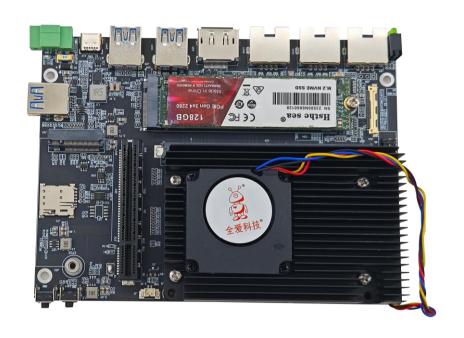


图 1.1 外观图

尺寸图

按键与接口说明

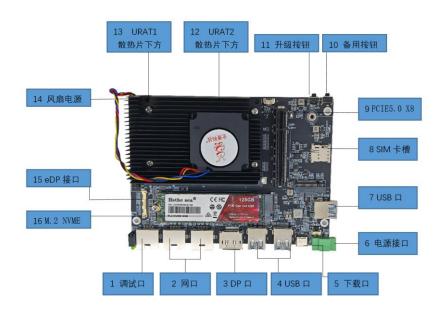


图 1.3 接口定义图

表 1-1 按键与接口说明表

1	调试接口	2	千兆以太网口
3	DP 🏻	4	USB □
5	Type-c 下载口	6	12V 电源口
7	USB □	8	SIM 卡槽
9	PCIE5.0 X8	10	备用按钮
11	软件升级按钮	12	URAT2
13	UART1	14	风扇电源插座
15	eDP 接口	16	M. 2 NVME

1.5 系统框图

全爱科技 AI 开发套件 HOUYI-1000A 硬件系统,系统框图如 1-3 所

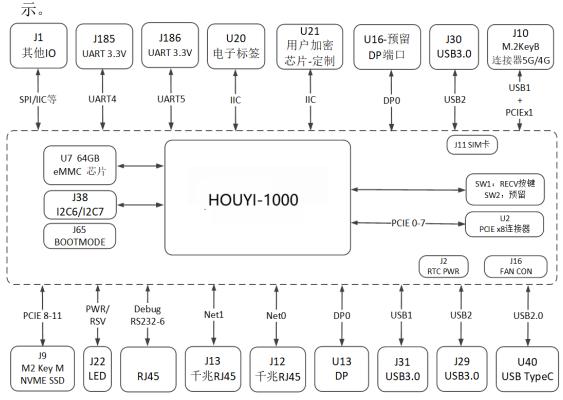


图 1.4 系统框图

2功能说明

2.1 基本规格

表 2-1 硬件基本规格

全爱型号	HOUYI-1000A-16	HOUYI-1000A-32	
规格类目	SoM 16G	SoM 32G	
SoM 模组尺寸	60mmX82mm	n, MXM314PIN	
CPU 性能	8*ARM A78, 2.65GHz	12*ARM A78, 2.65GHz	
AI 算力	50TOPS INT8	(稠密算力)	
内存容量	16GB(适合 10B 以 LLM)	32GB (适合 14B 以内 LLM)	
内存带宽	102.4GB/s(LPDDR5)		
编码能力	2*4K 60fps		
解码能力	2*8K 30fps		
ISP 能力	Y		
PCIE 接口	PCIe5.0		
净重	136g		
结构尺寸	150mm x 115mm x 25mm(长 x 宽 x 高)		
千兆网口	2组 Ethernet 千兆		
显示能力	DP/eDP 1.4b(2 with MST)		

2.2 大模型能力

测试模型: DeepSeek-R1-Distill-Qwen-7B-GPTQ-Int4-MTT

部署工具: musa-vllm

重要测试参数:

• 输入 token: 2048

表 2-1 gpu-memory-utilization=0.60下测试结果

并发数	首token延时(s)	Token延时 (s)	吞吐率(Tokens/s)
1	3. 1549328730034176	0. 10320266452325053	10. 88199535879809
2	3. 974085571753676	0. 11247585913685329	9. 995954396734625

5	7. 012584995599172	0. 13836560577729282	8. 129758216841617
10	11. 064425944249525	0. 1832553381996903	6. 155944294998657
20	并发数设太高会爆显 存,crash	并发数设太高会爆显 存, crash	并发数设太高会爆 显存, crash

3接口介绍

3.1 调试 接口

使用 USB 转 Console 调试线连接 RJ45 接口,进行打印系统日志。

3.2 PCIe 接口

有1组PCIe X8接口,建议使用PCIe Gen4规格。

3.3 USB 接口

共有 3 组 USB 接口,每组 USB 接口都可以支持 USB 2.0 和 USB3.2 Gen1 的规格。每组 USB 3.2 Gen1 接口只有一对 TX/RX 信号。

3.4 DP 接口

一路标准 DP 接口、一路 eDP 接口, 支持同屏同显和同屏异显。

3.5 以太网 接口

支持 2 组千兆以太网接口。

3.6 串口 接口

(暂不支持,等待系统更新)

表3-1 提供2个串口连接位置,串口引脚图如下表所示。

管脚	名称	管脚	名称
1	3. 3V	2	TX
3	RX	4	GND

3.7 电源 接口

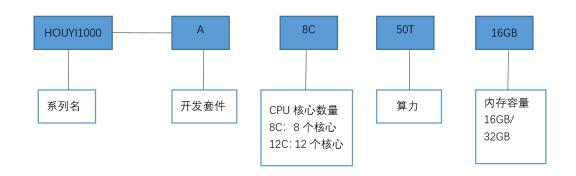
供电接口使用普通的 DC 插头,电源输入电压为 12V,配置 5A60W 的电源适配器。供电功率不低于 60W,若低于 60W 可能会出现瞬时供电不足的现象,导致系统异常。

3.8 Type C 接口

对外提供一个 Type-C 接口类型 主要用来对接调试主机进行下载文件。

3.9 M.2 Key M 连接器

M.2 Key M 连接器支持用户配置 NVME SSD 盘。默认选择 NVME 模式,支持 2280 规格形态。


表 3-	2 M.	2 Kev	M	连接器	引	脚定义
100		2 110 y	111	√-1× III	√ I	

管脚	名称 名称	管脚	名称		
1	GND	2	3V3		
3	GND	4	3V3		
5	PERn3	6	NC		
7	PERp3	8	NC		
9	GND	10	NC		
11	PETn3	12	3V3		
13	PETp3	14	3V3		
15	GND	16	3V3		
17	PERn2	18	3V3		
19	PERp2	20	NC		
21	GND	22	NC		
23	PETn2	24	NC		
25	PETp2	26	NC		
27	GND	28	NC		
29	PERn1	30	NC		
31	PERp1	32	NC		
33	GND	34	NC		
35	PETn1	36	NC		
37	PETp1	38	DEVSLP (0)		
39	GND	40	NC		
41	PERn0	42	NC		
43	PERp0	44	NC		
45	GND	46	NC		
47	PETn0	48	NC		
49	PETp0	50	PERST# (0) (0/1V8/3V3)		
51	GND	52	CLKREQ#		
53	REFCLKn	54	PEWAKE#		

□注释

命名规则

全爱科技 (上海) 有限公司

A 缩略语

A.1 A-E

A

AI	人工智能 (Artificial
	Intelligence)

В

ВТВ	板对板连接器 (Board to Board
	Connector)

E

ECC	错误检查和纠错技术(Error
	Checking and Correcting)
eMMC	嵌入式多媒体卡 (Embedded
	Multimedia Card)

A.2 F-J

F

FLOPS	每秒浮点运算次数 (Floating-
	point Operations Per Second)
FCC	美国联邦通信委员会(Federal
	Communications Commission)
HDMI	高清多媒体接口(High-
	Definition Multimedia Interface
)

Ι

I ² C	内部整合电路(Inter-integrated
	Circuit)

A.3 K-O

L

LPDDR	低功耗双倍速(Low-power
	Double Data Rate)

A.4 P-T

P

PWM	脉冲宽度调制(Pulse-width
	Modulation)
PCIe	快捷外围部件互连标准(
	Peripheral Component
	Interconnect Express)

R

RGMII	精简的干兆比媒介独立接口(
	Reduced Gigabit Media
	Independent Interface)
RS232	串行数据传输的EIA标准(
	Recommended Standard 232)
RS485	通信标准(Recommended
	Standard 485)

S

SPI	串行外设接口(Serial Peripheral
	Interface)

T

TFLOPS	每秒万亿次的浮点运算(
	teraFLOPS)

A.5 U-Z

U

UART	通用异步收发传输器 (Universal
	Asynchronous Receiver/transmitter
)
USB	通用串行总线 (Universal Serial
	Bus)